Tangent87
- 146
- 0
I'm trying to show that \sum_{m=0}^\infty \frac{1}{m!} (-1)^m {a^{\dagger}}^m a^m =|0 \rangle\left\langle 0|
Where a and {a^{\dagger}} denote the usual annihilation and creation operators. The questions suggests acting both sides with |n> but even if I did that and showed LHS=...=RHS then that still doesn't prove the original expression (we can't reverse the implies sign if you see what I mean). So I'm stuck as to what to do.
Where a and {a^{\dagger}} denote the usual annihilation and creation operators. The questions suggests acting both sides with |n> but even if I did that and showed LHS=...=RHS then that still doesn't prove the original expression (we can't reverse the implies sign if you see what I mean). So I'm stuck as to what to do.