Quantum Mechanics - Ladder Operators

Tangent87
Messages
146
Reaction score
0
I'm trying to show that \sum_{m=0}^\infty \frac{1}{m!} (-1)^m {a^{\dagger}}^m a^m =|0 \rangle\left\langle 0|

Where a and {a^{\dagger}} denote the usual annihilation and creation operators. The questions suggests acting both sides with |n> but even if I did that and showed LHS=...=RHS then that still doesn't prove the original expression (we can't reverse the implies sign if you see what I mean). So I'm stuck as to what to do.
 
Physics news on Phys.org
You have an equality of operators. The LHS is a linear operator, the RHS is a linear operator as well. On a vector space, two operators are equal iff their domains and codomains are equal. The projection operator on the RHS clearly is defined on all the Hilbert (Fock) space of the problem (as it is bounded), so my guess is that, if you can't show that the LHS is also bounded and defined on all H/F space, at least you could assume that the operatorial relation holds on the domain of the operator in the LHS (which would be equal to the common domain).

So you're only supposed to show that the codomains are equal, which you claim to have done, right ? If not, then write the sum explicitely and use how the operators act on an arbitrary state |n>.

Then you're done, I guess.
 
bigubau said:
You have an equality of operators. The LHS is a linear operator, the RHS is a linear operator as well. On a vector space, two operators are equal iff their domains and codomains are equal. The projection operator on the RHS clearly is defined on all the Hilbert (Fock) space of the problem (as it is bounded), so my guess is that, if you can't show that the LHS is also bounded and defined on all H/F space, at least you could assume that the operatorial relation holds on the domain of the operator in the LHS (which would be equal to the common domain).

So you're only supposed to show that the codomains are equal, which you claim to have done, right ? If not, then write the sum explicitely and use how the operators act on an arbitrary state |n>.

Then you're done, I guess.

Hmm ok, I'll be honest I didn't really understand most of what you said but if you say all I need to do is verify it for one case then I'll trust you and leave it at that. Thanks for your help.
 
On a second thought, you can try to <sandwich> the operatorial equality between <n| and |n>. What do you get ?
 
Tangent87 said:
The questions suggests acting both sides with |n> but even if I did that and showed LHS=...=RHS then that still doesn't prove the original expression (we can't reverse the implies sign if you see what I mean).

This statement is incorrect. If you're given two operators \hat{A},\hat{B} and you can show that

(\hat{A} -\hat{B}) |n\rangle =0, ~\forall n,

where |n\rangle is a complete set of states, then we can conclude that the operators are equal, \hat{A}=\hat{B}.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top