QuantumJG
- 30
- 0
Homework Statement
Please see the attachment
Homework Equations
Please see the attachment
The Attempt at a Solution
i.)
Normalisation implies that:
\int_{-\infty}^{\infty} \Psi (x,t)* \Psi (x,t) dx = 1
\int_{-\infty}^{\infty} |a_{0}| ^{2} | \psi _{0} (x) | ^ {2} + |a_{1}| ^{2} | \psi _{1} (x) | ^ {2} dx = 1
After a bit of work I got to this line
|a_{0}| ^{2} \int_{-\infty}^{\infty} | \psi _{0} (x) | ^ {2} dx + |a_{1}| ^{2} \int_{-\infty}^{\infty} | \psi _{1} (x) | ^ {2} dx = 1
|a_{0}| ^{2} + |a_{1}| ^{2} = 1
i.e. I found this to be the normalisation condition.
ii.)
First to see if the energy is an eigenvalue
[E] \Psi (x,t) = i \hbar \dfrac{d}{dt} \left( a _{0} \psi (x) e^{ - \dfrac{i E_{0} t }{ \hbar } } + a _{1} \psi (x) e^{ - \dfrac{i E_{1} t }{ \hbar } } \right)
[E] \Psi (x,t) = E_{0} a _{0} \psi (x) e^{ - \dfrac{i E_{0} t }{ \hbar } } + E_{1} a _{1} \psi (x) e^{ - \dfrac{i E_{1} t }{ \hbar } }
So the energy is not an eigenvalue and hence the energy is not a sharp observable.
\langle E \rangle = \int_{-\infty}^{\infty} \left( a _{0} * \psi (x) * e^{ \dfrac{i E_{0} t }{ \hbar } } + a _{1} * \psi (x) * e^{ \dfrac{i E_{1} t }{ \hbar } } \right) \left( E_{0} a _{0} \psi (x) e^{ - \dfrac{i E_{0} t }{ \hbar } } + E_{1} a _{1} \psi (x) e^{ - \dfrac{i E_{1} t }{ \hbar } } \right)
\langle E \rangle = E_{0} |a_{0}| ^{2} + E_{1} |a_{1}| ^{2}
\langle E \rangle = E_{0} |a_{0}| ^{2} + E_{1} (1 - |a_{0}| ^{2} )
\langle E \rangle = |a_{0}| ^{2} ( E_{0} - E_{1} ) + E_{1}
\langle E \rangle = |a_{0}| ^{2} ( \dfrac{1}{2} \hbar \omega - \dfrac{3}{2} \hbar \omega ) + \dfrac{3}{2} \hbar \omega
\langle E \rangle = \hbar \omega \left( \dfrac{3}{2} - |a_{0}| ^{2} \right)
I'm not 100% sure if this is right.