Quantum Mechanics - Ritz variational principle

el_hijoeputa
Messages
19
Reaction score
0
I was asked to do an assigment for a Chemical Physics class on the Ritz variational principle (used to calculate an approximation of an observable). We are working a simple potential, the one dimensional particle in the box (v=0 for 0<x<L, V= infinite elsewhere) and only considering the ground state. I'm asked to make approximations of the wave function with polynomials, first a linear one, then a second order, and with a third order one. We need to do this to verify that the closest the shape of our approx. wave function is to the one obtained by solving that potential, which is:
Y(x) = (2/L)^1/2 Sin [(pi/L) x], the calculated Energy get closer to the "real" one. Therefore a third order polynomial will perform better than a first order polynomial.

Well, my problem arises when making an a proximation of the wave function with only linear polynomials, because the derivatives in the Schrodinger Eq. are of second order, yielding 0 to the value of energy. The professor said that this is incorrect, that a change has to be made to the Schrodinger Eq. (probably using chain rule) for this case.

Anyway, I chose as my trial wave function with only linear polynomials the following:

Y(x) = { Ax, for 0<x<L/2
Y(x) = { B(x-L), for L/2<x<L

I have no idea on the modification needed to the Schrodinger Eq. Can someone shed some light, or give me advise on how to solve this?
 
Physics news on Phys.org
i also have met this problem
 
el_hijoeputa said:
Y(x) = { Ax, for 0<x<L/2
Y(x) = { B(x-L), for L/2<x<L

For what A and B is this a continuous function? Is the first derivative continuous?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top