vj3336
- 15
- 0
Homework Statement
Compute the partition function Z = Tr(Exp(-βH)) and then the average number of particles
in a quantum state <nα > for an assembly of identical simple harmonic oscillators. The Hamiltonian is:
H = \sum _{k}[(nk+1/2)\hbar - \mu nk]
with nk=ak+ak.
Do the calculations once for bosons and once for fermions.
Homework Equations
The Attempt at a Solution
For Bosons
Z=\text{Tr}[\text{Exp}[-\text{$\beta $H}]]=\sum _n \langle n|\text{Exp}[-\text{$\beta $H}]|n\rangle =\sum _n \left\langle n\left|\text{Exp}\left[-\beta<br /> \left(\sum _k \left(n_k+\frac{1}{2}\right)\hbar -\text{$\mu $n}_k\right)\right]\right|n\right\rangle =
=\sum _n \left\langle n\left|\text{Exp}\left[-\beta \left(\sum _k (\hbar -\mu )a_k{}^+a_k-\frac{1}{2}\hbar \right)\right]\right|n\right\rangle
I don't know how to go on from here.
Particularly I don't know how to deal with the sum in the exponential.