- #1

- 27

- 0

[tex]-i \hbar \bold r \times \nabla[/tex]

I rewrote this as:

[tex]i \hbar \nabla \times \bold r[/tex]

However there's a common rule for the del operator saying

[tex]\nabla \times \bold r = 0[/tex]

This doesn't make sense, what am I missing?

- Thread starter Antti
- Start date

- #1

- 27

- 0

[tex]-i \hbar \bold r \times \nabla[/tex]

I rewrote this as:

[tex]i \hbar \nabla \times \bold r[/tex]

However there's a common rule for the del operator saying

[tex]\nabla \times \bold r = 0[/tex]

This doesn't make sense, what am I missing?

- #2

alphysicist

Homework Helper

- 2,238

- 1

When you do the manipulations, you have to keep track of what the del operator is acting on. Let's say it is acting on a some general function [itex]f[/itex], then:

[tex]

\hat L f = -i\hbar \vec r\times \vec\nabla f = i \hbar \left(\vec \nabla f\right) \times \vec r

[/tex]

The important things is that the del operator is not operating on [itex]\vec r[/itex], but is operating on whatever the angular momentum operator is operating on.

- #3

- 27

- 0

When i calculate the components i get

[tex]

\hat L f = -i\hbar \vec r\times \vec\nabla f = i \hbar \left(\vec \nabla f\right) \times \vec r

[/tex]

[tex]

\left(\vec \nabla f\right) \times \vec r = \hat x ( f_y' z - f_z' y ) - \hat y ( f_x' z - f_z' x ) + \hat z ( f_x' y - f_y' x )

[/tex]

And the x- and y-components of the angular mommentum operator are:

[tex]

\hat L_x f = i \hbar ( f_y' z - f_z' y )[/tex]

[tex]\hat L_y f = - i \hbar ( f_x' z - f_z' x ) = i \hbar ( f_z' x - f_x' z )

[/tex]

Am I right so far?

- #4

alphysicist

Homework Helper

- 2,238

- 1

I would suggest that you still consider the angular momentum operator to be your original form:

[tex]

\hat L = -i\hbar \vec r\times \vec \nabla

[/tex]

and operating on something:

[tex]

\hat L f= -i\hbar \vec r\times \vec \nabla f

[/tex]

In my last post I was just showing that if you do move it around you don't get [itex]\vec\nabla\times \vec r=0[/itex]. It makes no difference for the components of this problem; but that way it matches the definition of angular momentum:

[tex]

\hat L = \hat r\times \hat p

[/tex]

The specific form you are using (with the del operator for the momentum) is in a position space representation.

- #5

- 27

- 0

[tex][\hat L_x, \hat L_y] = i \hbar \hat L_z[/tex]

You'll have to excuse me but I still write the components in this form out of pure LaTex-laziness :)

[tex]

\hat L_x f = i \hbar ( f_y' z - f_z' y )[/tex]

[tex]\hat L_y f = - i \hbar ( f_x' z - f_z' x ) = i \hbar ( f_z' x - f_x' z )

[/tex]

So my commutator is:

[tex][\hat L_x, \hat L_y] = \hat L_x \hat L_y f - \hat L_y \hat L_x f[/tex]

[tex]\hat L_x \hat L_y f = \hat L_x i \hbar ( f_z' x - f_x' z ) = i \hbar \ ( \ \ z (i \hbar ( f_z' x - f_x' z ))_y' - y(i \hbar ( f_z' x - f_x' z ))_z' \ \ )[/tex]

[tex]= (i \hbar)^{2} (xz \frac{d}{dy}\frac{d}{dz} f - z^{2} \frac{d}{dy} \frac{d}{dx} f - yx \frac{d^{2}}{dz^{2}} f + yz \frac{d}{dz} \frac{d}{dx} f)[/tex]

[tex]\hat L_y \hat L_x f = \hat L_y i \hbar ( f_y' z - f_z' y ) = i \hbar \ ( \ \ x (i \hbar ( f_y' z - f_z' y ))_z' - z(i \hbar ( f_y' z - f_z' y ))_x' \ \ )[/tex]

[tex]= (i \hbar)^{2} (xz \frac{d}{dz}\frac{d}{dy} f - yx \frac{d^{2}}{dz^{2}} f - z^{2} \frac{d}{dx} \frac{d}{dy} f + yz \frac{d}{dx} \frac{d}{dz} f)[/tex]

But these components are now equal so their difference is zero. This was not the answer I expected. I must still be doing something wrong.

- #6

alphysicist

Homework Helper

- 2,238

- 1

Let me write the operators: [itex]\hat L_x[/itex] acting on some function g is:

[tex]

\hat L_x g= -i\hbar\left[ y \frac{\partial}{\partial z} g - z \frac{\partial}{\partial y} g\right]

[/tex]

and the [itex]\hat L_y[/itex] operating on some function f is:

[tex]

\hat L_y f= -i\hbar\left[ z \frac{\partial}{\partial x} f - x \frac{\partial}{\partial z} f\right]

[/tex]

Now if you want [tex]\hat L_x \hat L_y f[/tex], you just plug the entire form of [itex]\hat L_y f[/itex] (the last equation) into the spot for g in the [itex]L_x[/itex] equation above. What's important is that the derivative [tex]\frac{\partial}{\partial z}[/tex] that occurs in the x component acts on the entire quantity [tex](\hat L_y f)[/tex], not just f. So you'll get five terms for [tex]\hat L_x \hat L_y f[/tex]. What do you get?

- #7

- 27

- 0

[tex]\hat L_x \hat L_y f = (i \hbar)^{2} (xz \frac{d}{dy}\frac{d}{dz} f - z^{2} \frac{d}{dy} \frac{d}{dx} f - yx \frac{d^{2}}{dz^{2}} f + yz \frac{d}{dz} \frac{d}{dx} f + y \frac{d}{dx} f)[/tex]

[tex]\hat L_y \hat L_x f = (i \hbar)^{2} (xz \frac{d}{dz}\frac{d}{dy} f - z^{2} \frac{d}{dx} \frac{d}{dy} f - yx \frac{d^{2}}{dz^{2}} f + yz \frac{d}{dx} \frac{d}{dz} f - x \frac{d}{dy} f)[/tex]

[tex][\hat L_x, \hat L_y] = \hat L_x \hat L_y f - \hat L_y \hat L_x f = (i \hbar)^{2} (y \frac{d}{dx} f) - (i \hbar)^{2} (x \frac{d}{dy} f) = i \hbar \ ( \ \ i \hbar ( y \frac{d}{dx} f - x \frac{d}{dy} f ) \ \ )[/tex]

Recall from my earlier post that

[tex]

\left(\vec \nabla f\right) \times \vec r = \hat x ( f_y' z - f_z' y ) - \hat y ( f_x' z - f_z' x ) + \hat z ( f_x' y - f_y' x )

[/tex]

Thus

[tex]\hat L_z f = i \hbar ( y \frac{d}{dx} f - x \frac{d}{dy} f )[/tex]

This is what I have in the end of the third line above. So

[tex][\hat L_x, \hat L_y] = i \hbar \hat L_z[/tex]

Which is what I wanted :)

Thanks for the help!

- Last Post

- Replies
- 3

- Views
- 2K

- Last Post

- Replies
- 2

- Views
- 946

- Last Post

- Replies
- 7

- Views
- 785

- Last Post

- Replies
- 1

- Views
- 1K

- Last Post

- Replies
- 1

- Views
- 514

- Last Post

- Replies
- 4

- Views
- 3K

- Last Post

- Replies
- 1

- Views
- 3K

- Last Post

- Replies
- 4

- Views
- 4K

- Last Post

- Replies
- 1

- Views
- 794

- Last Post

- Replies
- 5

- Views
- 2K