- #1

- 27

- 0

[tex]-i \hbar \bold r \times \nabla[/tex]

I rewrote this as:

[tex]i \hbar \nabla \times \bold r[/tex]

However there's a common rule for the del operator saying

[tex]\nabla \times \bold r = 0[/tex]

This doesn't make sense, what am I missing?

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter Antti
- Start date

- #1

- 27

- 0

[tex]-i \hbar \bold r \times \nabla[/tex]

I rewrote this as:

[tex]i \hbar \nabla \times \bold r[/tex]

However there's a common rule for the del operator saying

[tex]\nabla \times \bold r = 0[/tex]

This doesn't make sense, what am I missing?

- #2

alphysicist

Homework Helper

- 2,238

- 2

When you do the manipulations, you have to keep track of what the del operator is acting on. Let's say it is acting on a some general function [itex]f[/itex], then:

[tex]

\hat L f = -i\hbar \vec r\times \vec\nabla f = i \hbar \left(\vec \nabla f\right) \times \vec r

[/tex]

The important things is that the del operator is not operating on [itex]\vec r[/itex], but is operating on whatever the angular momentum operator is operating on.

- #3

- 27

- 0

When i calculate the components i get

[tex]

\hat L f = -i\hbar \vec r\times \vec\nabla f = i \hbar \left(\vec \nabla f\right) \times \vec r

[/tex]

[tex]

\left(\vec \nabla f\right) \times \vec r = \hat x ( f_y' z - f_z' y ) - \hat y ( f_x' z - f_z' x ) + \hat z ( f_x' y - f_y' x )

[/tex]

And the x- and y-components of the angular mommentum operator are:

[tex]

\hat L_x f = i \hbar ( f_y' z - f_z' y )[/tex]

[tex]\hat L_y f = - i \hbar ( f_x' z - f_z' x ) = i \hbar ( f_z' x - f_x' z )

[/tex]

Am I right so far?

- #4

alphysicist

Homework Helper

- 2,238

- 2

I would suggest that you still consider the angular momentum operator to be your original form:

[tex]

\hat L = -i\hbar \vec r\times \vec \nabla

[/tex]

and operating on something:

[tex]

\hat L f= -i\hbar \vec r\times \vec \nabla f

[/tex]

In my last post I was just showing that if you do move it around you don't get [itex]\vec\nabla\times \vec r=0[/itex]. It makes no difference for the components of this problem; but that way it matches the definition of angular momentum:

[tex]

\hat L = \hat r\times \hat p

[/tex]

The specific form you are using (with the del operator for the momentum) is in a position space representation.

- #5

- 27

- 0

[tex][\hat L_x, \hat L_y] = i \hbar \hat L_z[/tex]

You'll have to excuse me but I still write the components in this form out of pure LaTex-laziness :)

[tex]

\hat L_x f = i \hbar ( f_y' z - f_z' y )[/tex]

[tex]\hat L_y f = - i \hbar ( f_x' z - f_z' x ) = i \hbar ( f_z' x - f_x' z )

[/tex]

So my commutator is:

[tex][\hat L_x, \hat L_y] = \hat L_x \hat L_y f - \hat L_y \hat L_x f[/tex]

[tex]\hat L_x \hat L_y f = \hat L_x i \hbar ( f_z' x - f_x' z ) = i \hbar \ ( \ \ z (i \hbar ( f_z' x - f_x' z ))_y' - y(i \hbar ( f_z' x - f_x' z ))_z' \ \ )[/tex]

[tex]= (i \hbar)^{2} (xz \frac{d}{dy}\frac{d}{dz} f - z^{2} \frac{d}{dy} \frac{d}{dx} f - yx \frac{d^{2}}{dz^{2}} f + yz \frac{d}{dz} \frac{d}{dx} f)[/tex]

[tex]\hat L_y \hat L_x f = \hat L_y i \hbar ( f_y' z - f_z' y ) = i \hbar \ ( \ \ x (i \hbar ( f_y' z - f_z' y ))_z' - z(i \hbar ( f_y' z - f_z' y ))_x' \ \ )[/tex]

[tex]= (i \hbar)^{2} (xz \frac{d}{dz}\frac{d}{dy} f - yx \frac{d^{2}}{dz^{2}} f - z^{2} \frac{d}{dx} \frac{d}{dy} f + yz \frac{d}{dx} \frac{d}{dz} f)[/tex]

But these components are now equal so their difference is zero. This was not the answer I expected. I must still be doing something wrong.

- #6

alphysicist

Homework Helper

- 2,238

- 2

Let me write the operators: [itex]\hat L_x[/itex] acting on some function g is:

[tex]

\hat L_x g= -i\hbar\left[ y \frac{\partial}{\partial z} g - z \frac{\partial}{\partial y} g\right]

[/tex]

and the [itex]\hat L_y[/itex] operating on some function f is:

[tex]

\hat L_y f= -i\hbar\left[ z \frac{\partial}{\partial x} f - x \frac{\partial}{\partial z} f\right]

[/tex]

Now if you want [tex]\hat L_x \hat L_y f[/tex], you just plug the entire form of [itex]\hat L_y f[/itex] (the last equation) into the spot for g in the [itex]L_x[/itex] equation above. What's important is that the derivative [tex]\frac{\partial}{\partial z}[/tex] that occurs in the x component acts on the entire quantity [tex](\hat L_y f)[/tex], not just f. So you'll get five terms for [tex]\hat L_x \hat L_y f[/tex]. What do you get?

- #7

- 27

- 0

[tex]\hat L_x \hat L_y f = (i \hbar)^{2} (xz \frac{d}{dy}\frac{d}{dz} f - z^{2} \frac{d}{dy} \frac{d}{dx} f - yx \frac{d^{2}}{dz^{2}} f + yz \frac{d}{dz} \frac{d}{dx} f + y \frac{d}{dx} f)[/tex]

[tex]\hat L_y \hat L_x f = (i \hbar)^{2} (xz \frac{d}{dz}\frac{d}{dy} f - z^{2} \frac{d}{dx} \frac{d}{dy} f - yx \frac{d^{2}}{dz^{2}} f + yz \frac{d}{dx} \frac{d}{dz} f - x \frac{d}{dy} f)[/tex]

[tex][\hat L_x, \hat L_y] = \hat L_x \hat L_y f - \hat L_y \hat L_x f = (i \hbar)^{2} (y \frac{d}{dx} f) - (i \hbar)^{2} (x \frac{d}{dy} f) = i \hbar \ ( \ \ i \hbar ( y \frac{d}{dx} f - x \frac{d}{dy} f ) \ \ )[/tex]

Recall from my earlier post that

[tex]

\left(\vec \nabla f\right) \times \vec r = \hat x ( f_y' z - f_z' y ) - \hat y ( f_x' z - f_z' x ) + \hat z ( f_x' y - f_y' x )

[/tex]

Thus

[tex]\hat L_z f = i \hbar ( y \frac{d}{dx} f - x \frac{d}{dy} f )[/tex]

This is what I have in the end of the third line above. So

[tex][\hat L_x, \hat L_y] = i \hbar \hat L_z[/tex]

Which is what I wanted :)

Thanks for the help!

Share: