Quantum physics time evolution of an overlap

Monci
Messages
8
Reaction score
4

Homework Statement


[/B]
I'm trying to solve the following problem. (a) was easy but I am stuck at (b).
Quantum.png


Homework Equations


[/B]
Since we are told that the Hamiltonian is conserved, and the answer is in terms of the uncertainty of H, I assume I have to use the conservation of uncertainty. Maybe I could use the Schrödinger equation to see how time affects the wave function.

The Attempt at a Solution


Using the Schrödinger equation I have $$\psi (t) = \psi (0) + \frac{1}{i\hbar}H\psi(0)t + O(t^2)$$
However I don't find this particularly useful since I can't get from here to the uncertainty of H easily. I have tried the case with just two states but didn't accomplish anything. Dimensional analysis suggests something like $$ 1 - \frac{\Delta H^2}{\hbar^2}dt^2 + O(t^3) $$
I have no idea how to proceed.
 
Physics news on Phys.org
You also need the 2nd order term
$$
-\frac{H^2t^2}{\hbar}\psi(0)
$$
May be the problem asks you to make use of the uncertainty formula for energy ##\Delta H^2 = \langle H^2\rangle - \langle H\rangle ^2##.
 
  • Like
Likes Monci
blue_leaf77 said:
You also need the 2nd order term
$$
-\frac{H^2t^2}{\hbar}\psi(0)
$$
May be the problem asks you to make use of the uncertainty formula for energy ##\Delta H^2 = \langle H^2\rangle - \langle H\rangle ^2##.
Thank you. Once I added the second term it was very clear how I should proceed.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top