I don't think you're missing anything at all. I think the wikipedia article is just backwards and wrong when it says that measurement cannot decrease the entropy. Measurement always converts any state (high entropy or low) to a pure state.
Now let me go read it in context to see if I'm missing something... Hold on, let me get through this... Okay... Yes, I think I can explain the discrepancy.
When I say "density matrix" I'm thinking of a description of a single system. For me QM applies to single systems, which is part of the mystery of the stuff. For the author of that article, "density matrix" is a term that applies to an ensemble of states.
Suppose you had an ensemble of states all of which happened to be pure +z spin states (i.e. spin up). And you measured their spin in the x direction. What you'd get would be a mixture that would be 50% +x and 50% -x. That is, you would have converted a pure state to not only a mixed state, but a mixed state with maximum entropy. This is what the author is referring to.
One of my many little heresies with respect to QM is that I think that the density matrix states are fundamental, not the spinor states. So to me, the density matrix itself is sufficient to completely describe the state. So long as you stick to pure states you can always convert back and forth between spinors and density matrices. But mixed states don't work like that. A state which is half n half spin up/down, cannot be distinguished in the density matrix from a state which is half n half spin left/right because both use the same density matrix:
\left(\begin{array}{cc}0.5&0\\0&0.5\end{array}\right)
As far as I know, if you have a population of spin-1/2 particles that are modeled with the above density matrix, you cannot figure out if they got that way as a result of an x or a z measurement. This is contained in the statement that all the information about the state is contained in the density matrix. Now to a person who is a density matrix formalism believer, like me, this is just what you expect. But to a person who is a spinor formalism believer, like most everybody else, this means that there is secret (hidden variables) information that has been destroyed in the density matrix description.
These two different views don't mean any difference when it comes to calculating, it is just a matter of taste, or faith. But in the density matrix formalism, it makes sense to talk about the entropy of a single quantum state (I've learned to call these things "qubits", a term that did not exist when I learned this subject). In the spinor formalism, the density matrix itself cannot describe a single quantum object, so for them, to say the word "density matrix" means that they HAVE to be talking about an ensemble.
So now I'm satisfied with what they mean when they say "measurement cannot decrease entropy". But it's not that I like it.
As it turns out, I am a great fan of Julian Schwinger's "measurement algebra", which cuts to the heart of this issue. Schwinger works in pure states only, (actually, this is not quite true, but it is close enough), and his measurement algebra corresponds to the operators of the Stern-Gerlach experiment.
And the operation of a Stern-Gerlach experiment is precisely what is required to reduce the entropy in a beam of atoms -- the apparatus splits the beam into two beams, each of which is pure. You could then recombine the beams with the appropriate alteration on one path, and by that method turn the beam of atoms from a mixed state back to a pure one. This is a reversal of entropy, but to make it happen, of course you have to increase entropy in the apparatus or its power supply, etc.
So I think the wikipedia article is confusing, but I have no doubt that if you look up their references you will find that they are good peer reviewed opinions and all that. On the other hand, you can also find references that will see things the way I do.
Carl
I suppose I should admit that I own two websites that discuss these matters:
http://DensityMatrix.com and
http://MeasurementAlgebra.com but that my opinions are only my own. If you are turning in homework to be graded by a professor, you'll find that you do best if you parrot his version of reality, no matter how sloppy it is. This is the best excuse for attending class I can think of.