Query on the Euler Theorem for Rigid Body Rotation

AI Thread Summary
Euler's Theorem states that any displacement of a rigid body, with one fixed point, is equivalent to a rotation about some axis. The discussion highlights a query regarding how the theorem's proof, which involves the orthogonal matrix having an eigenvalue of +1, establishes the equivalence between 'any displacement' and 'rotation.' It is clarified that the +1 eigenvalue indicates an invariant axis under transformation, representing the rotation. Additionally, while a single rotation defines the theorem, three Euler angles are necessary to fully describe the orientation of that axis relative to a coordinate system. The conversation emphasizes the need for clarity in understanding the relationship between displacement and rotation in the context of the theorem.
Shan K
Messages
73
Reaction score
0
Hi,
I am having some problems conceptualizing the Euler's Theorem. Any help will be greatly appreciated.
In Goldstein's book the Euler's theorem is stated as 'Any displacement of a rigid body, whose one point remains fixed throughout, is a rotation about some axis', then he has proven that the orthogonal matrix must have an Eigen Value of +1 for a proper rotation.
1. My question is how does this proves the theorem ?
I have understood the logic behind the +1 eigen value, but could not able to find any equivalence between 'Any Displacement' and 'The rotation'.
2. Another one is that, why should we need three Euler angles for the orientation of a body because from Euler's theorem it can be obtained by only one rotation about some axis ?
Thanks
 
Physics news on Phys.org
In answer to your second question, Euler's theorem says that any rotation can be specified by a single rotation about some axis. But it takes two angles to specify the orientation of that 'some axis' relative to your coordinate system axes, so three angles in total are required.
 
  • Like
Likes Shan K
Shan K said:
Hi,
I am having some problems conceptualizing the Euler's Theorem. Any help will be greatly appreciated.
In Goldstein's book the Euler's theorem is stated as 'Any displacement of a rigid body, whose one point remains fixed throughout, is a rotation about some axis', then he has proven that the orthogonal matrix must have an Eigen Value of +1 for a proper rotation.
1. My question is how does this proves the theorem ?
I have understood the logic behind the +1 eigen value, but could not able to find any equivalence between 'Any Displacement' and 'The rotation'.
2. Another one is that, why should we need three Euler angles for the orientation of a body because from Euler's theorem it can be obtained by only one rotation about some axis ?
Thanks
I can try and answer part 1. I hope I understood your question. Here is the argument:
Once you agree that the matrix has an eigenvalue of +1, that means that there is an eigenvector, which is invariant under that transformation. That is precisely what you mean by a rotation about an axis. Any vector along that axis is unchanged by the transformation.
 
Chandra Prayaga said:
I can try and answer part 1. I hope I understood your question. Here is the argument:
Once you agree that the matrix has an eigenvalue of +1, that means that there is an eigenvector, which is invariant under that transformation. That is precisely what you mean by a rotation about an axis. Any vector along that axis is unchanged by the transformation.
Thanks Chandra Prayaga for your reply. I have understood this concept but it doesn't prove the equivalence between 'Rotation' and 'any displacement' because in Goldstein they have assumed this equivalence first and then proved that for a rotation there must be an axis, through the proof of +1 eigen value.
They have not proved that this +1 eigen value corresponds to that arbitrary displacement.
Thanks
 
phyzguy said:
In answer to your second question, Euler's theorem says that any rotation can be specified by a single rotation about some axis. But it takes two angles to specify the orientation of that 'some axis' relative to your coordinate system axes, so three angles in total are required.
Thanks Phyzguy.
 
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...

Similar threads

Back
Top