Question about an Eqn. in Shankar - wave function probability

Jacob Nie
Messages
9
Reaction score
4
Homework Statement
The section is about the probability of obtaining a certain ##\omega## upon measurement of operator ##\Omega.## And here it is dealing specifically with the case of a degenerate ##\Omega.##

It says: In general, one can replace in Postulate III
$$P(\omega)\propto \langle \psi | \mathbb{P}_{\omega}|\psi\rangle $$
where ##\mathbb{P}_{\omega}## is the projection operator for the eigenspace with eigenvalue ##\omega.##

(Postulate III was ##P(\omega)\propto |\langle \omega | \psi \rangle |^2.##)
Relevant Equations
n/a
I don't see why it is not ##P(\omega)\propto |\langle \psi | \mathbb{P}_{\omega}|\psi\rangle |^2.## After all, the wavefunction ends up collapsing from ##|\psi\rangle## to ##\mathbb{P}_{\omega}|\psi\rangle.##
 
Physics news on Phys.org
Jacob Nie said:
It says: In general, one can replace in Postulate III
$$P(\omega)\propto \langle \psi | \mathbb{P}_{\omega}|\psi\rangle $$
where ##\mathbb{P}_{\omega}## is the projection operator for the eigenspace with eigenvalue ##\omega.##

I don't see why it is not ##P(\omega)\propto |\langle \psi | \mathbb{P}_{\omega}|\psi\rangle |^2.## After all, the wavefunction ends up collapsing from ##|\psi\rangle## to ##\mathbb{P}_{\omega}|\psi\rangle.##
What is the explicit form of ##\mathbb{P}_{\omega}## when ##\omega## is not degenerate? When this ##\mathbb{P}_{\omega}## is used in ##\left< \psi \right| \mathbb{P}_{\omega} \left|\psi \right> ##, what results?
 
  • Like
Likes Jacob Nie
George Jones said:
What is the explicit form of ##\mathbb{P}_{\omega}## when ##\omega## is not degenerate? When this ##\mathbb{P}_{\omega}## is used in ##\left< \psi \right| \mathbb{P}_{\omega} \left|\psi \right> ##, what results?

The explicit form would be ##\mathbb{P}_{\omega} = |\omega\rangle \langle \omega | \psi \rangle.## So, ##\langle \psi | \mathbb{P}_{\omega}| \psi \rangle = \langle \psi | \omega \rangle \langle \omega | \psi \rangle = |\langle \omega | \psi \rangle |^2.##

Thank you very much for the helpful hint.
 
Now, a projection operator is an operator, not a vector. Let ##\Omega## be an observable, ##\hat{\Omega}## its representing self-adjoint operator. For an eigenvalue ##\omega## there may be several linearly independent eigenvectors ("degeneracy"). They form a subvector space of the Hilbert space, ##\text{Eig}(\hat{\Omega},\omega)##, and you always can choose an orthonormal basis ##|\omega,\alpha \rangle##. For simplicity I assume the ##\alpha## are just discrete labels and we deal with true normalizable eigenvectors. The generalization if you have continuous generalized eigenvectors "normalized to a ##\delta## distribution" is straight forward.

Then the projection operator to the subspace ##\text{Eig}(\hat{\Omega},\omega)## is
$$\hat{P}_{\omega} = \sum_{\alpha} |\omega,\alpha \rangle \langle \omega,\alpha|.$$
Then the probability to find the value ##\omega## when measuring ##\Omega## when the system is prepared in a pure state represented by a normalized state vector ##|\psi \rangle## is, according to Born's postulate,
$$P(\omega|\psi)=\langle \psi|\hat{P}_{\omega}|\psi \rangle=\sum_{\alpha} \langle \psi|\omega,\alpha \rangle \langle \omega,\alpha|\psi \rangle = \sum_{\alpha} |\psi(\omega,\alpha)|^2.$$
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top