A Question about coefficients of massless quantum fields

hgandh
Messages
26
Reaction score
2
From Chapter 5.9 Weinberg's QFT Vol 1, massless fields are defined as:
\psi_l(x)=(2\pi)^{-3/2}\int d^{3}p\sum_{\sigma}[k a(p,\sigma)u_l(p,\sigma)e^{ipx}+\lambda a^{c\dagger}(p,\sigma)v_l(p,\sigma)e^{-ipx}]
With coefficients defined by the conditions:
u_{\bar{l}}(p,\sigma) =\sqrt{|k|/p^0} \sum_{l}D_{\bar{l}l}(L(p))u_l(k,\sigma)
v_{\bar{l}}(p,\sigma) =\sqrt{|k|/p^0} \sum_{l}D_{\bar{l}l}(L(p))v_l(k,\sigma)
u_{\bar{l}}(p,\sigma) exp(i\sigma \theta(k,W) =\sqrt{|k|/p^0} \sum_{l}D_{\bar{l}l}(W)u_l(k,\sigma)
v_{\bar{l}}(p,\sigma) exp(-i\sigma \theta(k,W) =\sqrt{|k|/p^0} \sum_{l}D_{\bar{l}l}(W)v_l(k,\sigma)
Where D_{\bar{l}l}(L(p)) is a general, irreducible representation of the homogenous Lorentz group restricted to standard boosts, L(p) that take the standard momentum k = (0,0,k) into arbitrary momentum p and D_{\bar{l}l}(W) is the Lorentz representation restricted to the little group for massless particles. Now Weinberg says that the equations for v are just the complex conjugates of the equations for u so that we can adjust the constants k and \lambda so that
v_l(p,\sigma)=u_l(p,\sigma)^*
However, taking the complex conjugates of the equations of u:
u_{\bar{l}}(p,\sigma)^* =\sqrt{|k|/p^0} \sum_{l}D_{\bar{l}l}(L(p))^*u_l(k,\sigma)^*
u_{\bar{l}}(p,\sigma)^* exp(-i\sigma \theta(k,W) =\sqrt{|k|/p^0} \sum_{l}D_{\bar{l}l}(W)^*u_l(k,\sigma)^*

This is where I get stuck. The above will be true if D_{\bar{l}l}(L(p))^*=D_{\bar{l}l}(L(p)) and D_{\bar{l}l}(W)^*=D_{\bar{l}l}(W). However, this does seem to necessarily be true. Is there another way to prove Weinberg's claim?
 
Physics news on Phys.org
@hgandh , this is not a "B" level question. It probably needs to be "A", which assumes a graduate level knowledge of the subject area. What is your background in this subject area?
 
PeterDonis said:
@hgandh , this is not a "B" level question. It probably needs to be "A", which assumes a graduate level knowledge of the subject area. What is your background in this subject area?
I should have marked it as "A". I am studying QFT currently with all of the assumed pre requisites and some group theory.
 
hgandh said:
I should have marked it as "A".

I have changed the thread level to "A".
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top