Question about earth being much more radioactive in the past?

  • Thread starter Thread starter udtsith
  • Start date Start date
  • Tags Tags
    Earth Radioactive
AI Thread Summary
The discussion centers on Earth's historical radioactive decay and its implications for geological activity and life. Current estimates show Earth generates 44 terawatts of heat, with 23 terawatts from radioactive decay, primarily from uranium, thorium, and potassium. Calculations suggest that radioactive heat production was significantly higher 2 to 4 billion years ago, potentially influencing volcanic activity and plate tectonics. However, the overall impact on life is deemed minimal compared to solar heat. The conversation also touches on the Moon's heat generation in relation to Earth's early impact theory, suggesting it may not be homogeneous.
udtsith
Messages
53
Reaction score
1
I read a recent article (pc magazine) that said the Earth is currently generating 44 terawatts of heat with 23 terawatts comign from radioactive decay (8 from uranium, 8 from thorium, and 4 from potassium). Given this, and that the Earth is 4.5 billion years old...how many more terawatts were coming from radioactive decay at 2 billion and 4 billion years ago?
What sort of affect would this have had on life and the continents moving?
 
Earth sciences news on Phys.org
Assuming the longest-lived (radioactive) isotopes of those elements are producing the heat, the decay constants are: K40-1.248E9 yrs., U238-4.537E9 yrs., Th232-1.40E10 (ref. http://www.nndc.bnl.gov/chart/" ). Given the amount of a radioactive element present now,N0, the amount a given time, t, ago would be N(t)=N0et*ln(2)/D, where D is one of the half-life values given above. Assuming the amount of heat produced is proportional to the rate of decay, H(t)=H0et*ln(2)/D, where H0 is the amount of heat being produced by the element today. Adding up the values for each of the elements I get: Hnow= 20 TW H2 Gya≈ 32 TW H4 Gya≈ 61 TW. I cannot speak definitively on your last question, but since the largest value is only about 3 times larger than the current one I doubt there would be a large qualitative difference (maybe volcanos would have been somewhat more common and plate tectonics somewhat faster). Life is not likely to have been greatly influenced by this extra heat (at least not directly, though the geological effects might have had some influence) since the Sun usually provides much more heat. Of course it is possible that other sources of radioactivity were also significant long enough ago (so my estimate above is more of a lower bound on the amount of heat due to radioactivity at those points in the past).
 
Last edited by a moderator:
So if 23 TeraWatts is coming from radioactive decay. Then should that mean that in relative proportion to the size of the Earth, the Moon will be generating the same if the theory of a large early impact is its origin?

(maybe volcanos would have been somewhat more common and plate tectonics somewhat faster)

I am not a geologist or a volcanist, so I could have this wrong, but there are some ancient volcanoes, which are said to have erupted somewhat unique material, probably due to the high temperatures, not entirely sure...

"No modern komatiite lavas are known, as the Earth's mantle has cooled too much to produce highly magnesian magmas."

Ultra Mafic - http://en.wikipedia.org/wiki/Lava#Ultramafic_lava
 
Last edited:
MrGamma said:
So if 23 TeraWatts is coming from radioactive decay. Then should that mean that in relative proportion to the size of the Earth, the Moon will be generating the same if the theory of a large early impact is its origin?

The Earth is not homogeneous. Therefore, if the Moon is a chip off the old block, who's to say it's a homogeneous chip? More than likely it took a large chunk of mantle.
 
Thread 'The Secrets of Prof. Verschure's Rosetta Stones'
(Edit: since the thread title was changed, this first sentence is too cryptic: the original title referred to a Tool song....) Besides being a favorite song by a favorite band, the thread title is a straightforward play on words. This summer, as a present to myself for being promoted, I purchased a collection of thin sections that I believe comprise the research materials of Prof. Rob Verschure, who at the time was faculty in the Geological Institute in Amsterdam. What changed this...
These last days, there is a seemingly endless cluster of rather powerful earthquakes close to the islands of Santorini, Amorgos, Anafi, and Ios. Remember, this is a highly volcanically active region, Santorini especially being famous for the supervolcanic eruption which is conjectured to have led to the decline of the Minoan civilization: https://en.m.wikipedia.org/wiki/Minoan_eruption To grasp the scale of what is happening, between the 26th of January and the 9th of February, 12000...
Back
Top