Question about invertible matrices

  • Thread starter Thread starter Cyborg31
  • Start date Start date
  • Tags Tags
    Matrices
Cyborg31
Messages
36
Reaction score
0

Homework Statement


A, B, I-Y^-1, X, Y are n x n invertible matrices

(A(I-Y^-1))^-1 = YB

Solve for Y

Homework Equations


The Attempt at a Solution



(I - Y^-1)^-1A^-1 = YB
(I - Y^-1)^-1A^-1B^-1 = Y
A^-1B^-1 = (I - Y^-1)Y
A^-1B^-1 = Y - I
A^-1B^-1*(A^-1B^-1)^-1 = Y - I(A^-1B^-1)^-1
I = Y - (A^-1B^-1)^-1
Y^-1*I = Y^-1*Y - (A^-1B^-1)^-1
Y^-1 = I - (A^-1B^-1)^-1
Inverse both sides
Y = (I - (A^-1B^-1)^-1)^-1
or is it
Y = I^-1 - A^-1B^-1
Y = I - A^-1B^-1

Is this correct?
 
Physics news on Phys.org
Cyborg31 said:

Homework Statement


A, B, I-Y^-1, X, Y are n x n invertible matrices

(A(I-Y^-1))^-1 = YB

Solve for Y

Homework Equations





The Attempt at a Solution



(I - Y^-1)^-1A^-1 = YB
(I - Y^-1)^-1A^-1B^-1 = Y
A^-1B^-1 = (I - Y^-1)Y
A^-1B^-1 = Y - I
You can solve for Y from here immediately:
A^-1B^-2+ I= Y

A^-1B^-1*(A^-1B^-1)^-1 = Y - I(A^-1B^-1)^-1
Don't you mean = (Y- I)(A^-1B^-1)^-1

I = Y - (A^-1B^-1)^-1
This is wrong now.

Y^-1*I = Y^-1*Y - (A^-1B^-1)^-1
Y^-1 = I - (A^-1B^-1)^-1
Inverse both sides
Y = (I - (A^-1B^-1)^-1)^-1
or is it
Y = I^-1 - A^-1B^-1
Y = I - A^-1B^-1

Is this correct?
 
Didn't know you could move -I to the other side like normal algebra.

Is the B^-2 a typo? Cause I don't know what that's supposed to represent.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top