ythamsten
- 16
- 0
Homework Statement
Hey PF, I'm here again asking about linear transformations, ha ha.
Let C={(x,y) \in \mathbb R2 | x²+y²≤1} a circle of radius 1 and consider the linear transform
T:\mathbb R2→\mathbb R2
(x,y) \mapsto (\frac{5x+3y}{4},\frac{3x+5y}{4})
Find all values of a natural n for which Tn(C), the image of C after n applications of T, contains at least 2013 points (a,b) with coordinates a, b \in \mathbb Z.(x,y) \mapsto (\frac{5x+3y}{4},\frac{3x+5y}{4})
Homework Equations
N/A
The Attempt at a Solution
At first I've fixed for both input and output basis for the map ε = {e1,e2} (i.e. the canonic basis) writing the linear transformation in a matrix form:
\begin{pmatrix}<br /> T\end{pmatrix}^{ε}_{ε}\begin{pmatrix}<br /> x\\<br /> y<br /> \end{pmatrix}_{ε}<br /> =\begin{pmatrix}<br /> \frac{5}{4} & \frac{3}{4}\\<br /> \frac{3}{4} & \frac{5}{4}<br /> \end{pmatrix}\begin{pmatrix}<br /> x\\<br /> y<br /> \end{pmatrix}_ε
Then, knowing I'm going to be applying the linear transformation n times, I thought would be a wise choice to diagonalize it, taking advantage of it's nice form to do so:
\begin{pmatrix}<br /> T\end{pmatrix}^{ε}_{ε} = -\frac{1}{2}\begin{pmatrix}<br /> 1 & 1\\<br /> 1 & -1<br /> \end{pmatrix}\begin{pmatrix}<br /> 2 & 0\\<br /> 0 & \frac{1}{2}<br /> \end{pmatrix}\begin{pmatrix}<br /> -1 & -1\\<br /> -1 & 1<br /> \end{pmatrix}
But right now, I'm having a little bit of trouble to figure out how to count the number of points on the maps that has both coordinates belonging to \mathbb Z. Hope for some help, thanks in advance guys.