Question about right hand rule (magnetism)

Click For Summary
The right hand rule (RHR) is not limited to situations where the magnetic field, force, and current vectors are orthogonal; it can be applied in various configurations. The formula for magnetic force, F = qvB sin(theta), indicates that the angle between the velocity of a charged particle and the magnetic field can vary, not necessarily being 90 degrees. In scenarios like a current-carrying wire, the force acting on it can also occur at different angles. Only the component of the force that is orthogonal to the current contributes to the magnetic field. Understanding these relationships expands the applicability of the right hand rule beyond strict orthogonality.
gokuls
Messages
35
Reaction score
0
Is the right hand rule for determining the direction of the magnetic field, force, and current only used when the aforementioned vectors are orthogonal to each other? Or, can the RHR be used in other cases as well?
 
Physics news on Phys.org
When aren't they orthogonal?
 
They're not always orthogonal I think. The formula for the magnetic force on a charged particle:
F = qvB sin(theta). The sin is the angle between the velocity vector of the charged particle and the magnetic field, and it doesn't have to be 90.
 
Example: A wire with current going through it has a force applied to it which makes it move. The force could be at any angle but only the portion of the force which is orthogonal to the current will make a magnetic field (which is orthogonal to both the current and the portion of force which is orthogonal to the current.

I hope that makes sense.
 
I'm working through something and want to make sure I understand the physics. In a system with three wave components at 120° phase separation, the total energy calculation depends on how we treat them: If coherent (add amplitudes first, then square): E = (A₁ + A₂ + A₃)² = 0 If independent (square each, then add): E = A₁² + A₂² + A₃² = 3/2 = constant In three-phase electrical systems, we treat the phases as independent — total power is sum of individual powers. In light interference...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
8K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
8
Views
3K
Replies
9
Views
2K