Question about the Bohr model of atom and and electron in an orbital

Click For Summary
SUMMARY

The discussion focuses on the behavior of electrons in the Bohr model of the atom when they gain energy from a photon. It is established that increased energy results in electrons moving further from the nucleus, correlating with higher potential energy. The conversation clarifies that while kinetic energy can increase, it does not solely dictate the electron's behavior; rather, the expected values of radius and kinetic energy must be calculated according to quantum mechanics principles. Additionally, excessive energy can lead to ionization, where the electron is released from the atom.

PREREQUISITES
  • Understanding of the Bohr model of the atom
  • Familiarity with quantum mechanics principles
  • Knowledge of potential and kinetic energy concepts
  • Basic grasp of the Schrödinger equation
NEXT STEPS
  • Study the implications of the Schrödinger equation on atomic orbitals
  • Explore the concept of ionization energy in atomic physics
  • Investigate the behavior of Rydberg atoms and their properties
  • Learn about the virial theorem and its application to bound systems
USEFUL FOR

Students of physics, educators explaining atomic models, and researchers interested in quantum mechanics and atomic behavior.

aaronll
Messages
23
Reaction score
4
I have a question about what happen when an electron in the Bohr model of atom, gains energy because for example is "hitting" by a photon.
Electron have an energy, and it is the sum of potential and kinetic.
When they gain energy, they gain potential energy so they go further away from nucleus and become slower, or they gain kinetic energy so they become faster but near to nucleus? and why?
thanks
 
Physics news on Phys.org
aaronll said:
I have a question about what happen when an electron in the Bohr model of atom, gains energy because for example is "hitting" by a photon.
Electron have an energy, and it is the sum of potential and kinetic.
When they gain energy, they gain potential energy so they go further away from nucleus and become slower, or they gain kinetic energy so they become faster but near to nucleus? and why?
thanks
In general, the greater the energy the further the electron is from the nucleus. This is true for QM atomic orbitals - and also true for classical orbits in an inverse square potential.
 
PeroK said:
In general, the greater the energy the further the electron is from the nucleus. This is true for QM atomic orbitals - and also true for classical orbits in an inverse square potential.
Thank you
But my question is because for an energy E i think there is ( if the orbit is circular with a definite radius r) an "infinite" amount of pairs of velocity and distance (v,r) with the same energy, so in what way when energy increase the electron be?
higher speed? higher potential?
 
aaronll said:
Thank you
But my question is because for an energy E i think there is ( if the orbit is circular with a definite radius r) an "infinite" amount of pairs of velocity and distance (v,r) with the same energy, so in what way when energy increase the electron be?
higher speed? higher potential?
Unlike the classical case, the orbitals are not well-defined trajectories. So, you have to calculate the expected values of ##r## and kinetic energy. These, however, follow the same principle that higher energy levels correspond to a greater expected value of ##r##.

It should be clear that if you give an electron too much energy then the atom is ionised and the electron is released - i.e. the energy takes it beyond any bound orbital.
 
PeroK said:
Unlike the classical case, the orbitals are not well-defined trajectories. So, you have to calculate the expected values of ##r## and kinetic energy. These, however, follow the same principle that higher energy levels correspond to a greater expected value of ##r##.

It should be clear that if you give an electron too much energy then the atom is ionised and the electron is released - i.e. the energy takes it beyond any bound orbital.
Maybe is the fact that higher energy levels correspond to a greater expected value of r, why the electron doesn't become only "quicker" around the orbit?
 
aaronll said:
Maybe is the fact that higher energy levels correspond to a greater expected value of r, why the electron doesn't become only "quicker" around the orbit?
... because the orbitals must satisfy the Schroedinger equation.
 
PeroK said:
... because the orbitals must satisfy the Schroedinger equation.
Ok... that is.
Thank you
 
Maybe it is interesting to first consider the classical case, e.g. a comet being hit by another one. This will primarily induce a change of the comets velocity including it's direction. If the comet was on a circular orbit before the collision, it will end up on an elliptical or even unbound hyperbolical orbit after the collision. On an elliptical orbit, both kinetic and potential energy will periodically change (anticyclically) between their maximum and minimum values.
By the virial theorem, however, their average values are always related as 2<T> = -<V>, at least for the bound elliptical orbits.
So besides a change in energy, there will in general be a change in angular momentum, which is also true in the atomic case.
The classical theory applies also to atoms if they are in highly excited states, so called Rydberg atoms.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
742
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
566
  • · Replies 3 ·
Replies
3
Views
1K