Question about the no-cloning theorem

  • Thread starter Thread starter jk22
  • Start date Start date
  • Tags Tags
    Theorem
jk22
Messages
732
Reaction score
25
In this theorem we have a unitary transformation ##U|a>|b>=|a>|a>##

But isn't it obvious that this is a rotation on a subspace but this rotation should depend on both |a> and |b> ?

With this dependence it seems to me the conclusion cannot be reached since the unitarity is U(a,b)U(a,b)^+=1 but U(c,b)U(a,b)^+ is not forcedly 1.
 
Physics news on Phys.org
It's not really clear to me what you're asking. The point of the no cloning theorem is that the unitary you give does not exist. Is that the conclusion you're saying cannot be reached? Can you be more specific and quote the proof you're reading and point us to the particular part of the proof you're not following?

In any case, a "rotation" that depends on the thing you're "rotating" is not a rotation at all, so that part of your comment doesn't track.

If we consider the simple case of cloning a single qubit with no working bits then the argument is pretty simple. We have that ##U|0\rangle |0\rangle = |0\rangle |0\rangle## and ##U|1\rangle |0\rangle = |1\rangle |1\rangle## (it is not necessary to assume anything about what the proposed unitary does when the target qubit is non-zero). Then if ##|\psi\rangle = \alpha |0\rangle | + \beta |1\rangle##, ##|\alpha|^2 + |\beta|^2 = 1##, we have by linearity that
##U|\psi\rangle|0\rangle = \alpha U|0\rangle |0\rangle + \beta U |1\rangle |0\rangle = \alpha |0\rangle |0\rangle + \beta |1\rangle |1\rangle \neq |\psi\rangle|\psi\rangle## for all ##\alpha## and ##\beta##.

With a bit more work, the argument can be generalized to arbitrary states and with an arbitrarily-big ancilla register for the cloning operator to use as working space. More general proofs use the fact that a unitary operator must, by definition, preserve the inner product between all pairs of states and show that any proposed cloning operator cannot preserve inner products between non-parallel, non-orthogonal states.
 
Last edited:
U cannot be linear in fact it is not even an application since :

U|2a>|b>=|2a>|2a>=4|a>|a>=U2|a>|b>
=U|a>|2b>=|a>|a>

Which is a contradiction.
 
Another proof that such an operation cannot exist
 
To be complete only the null state can be cloned since it gives again a null state whicj is an impossible event.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top