Question about the Pauli exclusion principle.

alemsalem
Messages
173
Reaction score
5
Suppose there are only two states, and that only two electrons could fit in them (spin states for example), but wouldn't these two states form a basis and so generate an infinite number of states that are linear combinations of these two, so three electrons could be in three different states.

Obviously that's wrong, but why? do they have to be in orthogonal states?
 
Physics news on Phys.org
The Pauli exclusion principle arises from the requirement that the wavefunction of the system be antisymmetric under the exchange of fermionic degrees of freedom. Now you may try to write down the wavefunction with three particles, but you'll find that the antisymmetry property causes such a wavefunction to vanish.
 
alemsalem said:
Suppose there are only two states, and that only two electrons could fit in them (spin states for example), but wouldn't these two states form a basis and so generate an infinite number of states that are linear combinations of these two, so three electrons could be in three different states.

Obviously that's wrong, but why? do they have to be in orthogonal states?


I think there is some confusion here. There are two states, yes, so in principle, you can form an infinite number of states through linear combinations, but those are one particle states.

For a two particle state, the only one allowed is the state where one particle is spin up and the other is spin down. There is only one state for for the combined system.

I hope that helps.
 
Should i forward a conclusion that linear combination of the spin functions of the electron cannot be done: that means ultimately there are only 2 possible spin states for an electron ! Anyone can further comment this ?
 
gerrardz said:
Should i forward a conclusion that linear combination of the spin functions of the electron cannot be done: that means ultimately there are only 2 possible spin states for an electron ! Anyone can further comment this ?

There are only two possible BASIS states for the spin states for an electron since they are spin 1/2. However, there an infinite number of spin states for an electron because you can make any number of other states by performing a linear combination of these 2 states.

I hope I got your question correct.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...

Similar threads

Replies
17
Views
3K
Replies
15
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
3
Views
1K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
6
Views
2K
Back
Top