Undergrad Question on analytic mechanics

Click For Summary
The discussion centers on understanding the derivation of the kinetic energy expression for a bead moving along a parabolic path defined by y = b*x^2. The key point is that the velocity in the y-direction, y(dot), is derived using the chain rule, leading to y(dot)^2 being expressed as 4*b^2*x^2*x(dot)^2, rather than simply 4*b^2*x^2. This is crucial because it incorporates the time derivative of x, reflecting the bead's motion along the constrained path. The kinetic energy is then formulated as T = 1/2*m*(x(dot)^2*(1 + 4*b^2*x^2)), which accounts for the constraint imposed by the parabola. The discussion concludes that the motion can be analyzed using Lagrange multipliers or by eliminating one degree of freedom due to the constraint.
hagopbul
Messages
397
Reaction score
45
TL;DR
There this example in analytical mechanics which I am not able to understand
Hello :

There is this example ,on analytical mechanics , which I am not able to understand why he solve it in that way

We have a bead moving on a parabola that it's equation is y = b*x^2

Find the equation of motion
Constrain equations :
y=b*x^2
z=0
The bead have only one coordinate call it x ,x(dot)=d(x)/dt, y(dot)=d(y)/dt , z(dot) = d(z)/dt
x(dot)^2 = x(dot)*x(dot)
Kinetic energy:
T = 1/2*m*(x(dot)^2+y(dot)^2+z(dot)^2)
=1/2*mx(dot)^2*(1+4*b^2*x^2)
Here is my question how he reached this above line
Why y(dot)^2 = 4*b^2*x^2*x(dot)^2
Shouldn't y(dot)^2 = 4*b^2*x^2

I am reviewing this class and just not able to find why it is like that

Regards
H
 
Physics news on Phys.org
Because the dot denotes derivative wrt time and not wrt x. It is just the chain rule of derivatives: ##dy/dt = (dy/dx)(dx/dt)##
 
  • Like
Likes Albertus Magnus and Gavran
The kinetic energy is $$ \frac12m|\vec v|^2 $$ where ## \vec v ## is a vector quantity which can be expressed in Cartesian coordinate system as ## v_x\hat i+v_y\hat j+v_z\hat k ##.
## |\vec v|^2 ## is ## v_x^2+v_y^2+v_z^2 ## and the kinetic energy can be expressed as $$ \frac12m(v_x^2+v_y^2+v_z^2) $$ which is the three dimensional generalization of the kinetic energy. ## v_x ##, ## v_y ## and ## v_z ## are one-dimensional velocities along the ## x ##, ## y ## and ## z ## directions and they can be expressed as ## dx/dt=\dot x ##, ## dy/dt=\dot y ## and ## dz/dt=\dot z ##, respectively.
## dy/dx=2bx ## is not a velocity and $$ \frac12m(\frac{dy}{dx})^2=\frac12m4b^2x^2 $$ can not be kinetic energy.
 
  • Like
Likes Albertus Magnus
In the case of the bead constrained on the parabola, the only forces present is the force of constraint. The motion is two dimensional, however, the constraint ##y-bx^2=0## reduces the configuration space to one dimension, thus we should expect one equation of motion. This problem can be handled with the technique of Lagrange multipliers or one can simply eliminate one degree of freedom by incorporating the constraint explicitly.
The kinetic energy is given by:$$T={m\over 2}({\dot x}^2+{\dot y}^2)={m\over 2}{\dot x}^2(1+4b^2x^2),$$ where the constraint has been used to eliminate ##y##. Since there is no potential or other external forces present the Lagrangian is such that ##L=T##. From the Euler-Lagrange equations we have that:
$$m\ddot x=\dot p={\partial L\over\partial x}=4mb^2x{\dot x}^2.$$ Finding the equation of motion is an easy step form this point.
 
For simple comparison, I think the same thought process can be followed as a block slides down a hill, - for block down hill, simple starting PE of mgh to final max KE 0.5mv^2 - comparing PE1 to max KE2 would result in finding the work friction did through the process. efficiency is just 100*KE2/PE1. If a mousetrap car travels along a flat surface, a starting PE of 0.5 k th^2 can be measured and maximum velocity of the car can also be measured. If energy efficiency is defined by...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
538
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K