Question on angular momentum of triplet and singlet wavefunctions

The_Foetus
Messages
2
Reaction score
0
Hi, I'm relatively new to QM so just a basic explanation of my problem would be amazing!

I'm doing some internet research on superfluidity over my summer holiday, and was looking specifically at 3He, and the way it forms Cooper pairs. Having read a classical analogy to why the relative angular momentum of the two He atoms must not be 0, I then read that this excludes the possibility of having the wavefunction (|+,-> - |-,+>)/√2, where + and - represent up and down spin respectively.

This leaves then a possible triplet wavefunction of
ψ = a*|+,+> + b*(|+,-> + |-,+>)/√2 + c*|-,->
where a, b, c are constants.

My question is why the |+,-> + |-,+> state has a non-zero angular momentum, but the |+,-> - |-,+> state has l = 0.

Simple question I know, but would really appreciate an explanation.
Regards,
Foetus
 
Physics news on Phys.org
Last edited:
The_Foetus said:
My question is why the |+,-> + |-,+> state has a non-zero angular momentum, but the |+,-> - |-,+> state has l = 0.
The raising operator J_+ gives zero when acting on that state.
 
But that's not enough information to conclude that the total angular momentum is zero. (In QM jargon, not intended for the OP, J_+ annihilates any state with m=+j.)

However, it's also true that J_x, J_y, and J_z all give zero when acting on this state. So it is an eigenstate of each component of the angular momentum operator with eigenvalue zero.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top