Question on correctly interpreting a bra-ket equation

Click For Summary
The discussion focuses on interpreting the bra-ket equation for uncertainty in energy, specifically the term ##(\hat H - \bar E )^2##. It is clarified that this expression can indeed be expanded using binomial expansion, leading to ##\hat H^2 - 2 \bar E \hat H + \bar E^2##, which can be distributed over the state ##|\Phi \rangle##. Additionally, it is confirmed that for an operator ##\hat{H}## acting on its eigenvector, the relation ##\hat H^2 \psi = E^2 \psi## holds true. The user expresses gratitude for the clarification, indicating they can proceed with their calculations. Understanding these notations is crucial for solving quantum mechanics problems related to energy uncertainty.
blaisem
Messages
28
Reaction score
2
I am trying to solve for the uncertainty in energy ##\Delta E## in the following exercise:
$$\Delta E = \sqrt{\langle \Phi | (\hat H - \bar E )^2 | \Phi \rangle}$$
Questions
  1. What does ##(\hat H - \bar E )^2## mean? Is it a simple binomial expansion into ##\hat H^2 - 2 \bar E \hat H + \bar E^2##, which I distribute over ##|\Phi \rangle##?
  2. If that is the case, does ##\hat H^2 \psi = E^2 \psi##?

I'm not inquiring for the full solution. I simply do not understand the notation in order to begin.

Background
In case a broader context is important, here is the full info available to me:
$$\begin{align} \Phi = a_1 \psi _1 &+ a_2 \psi _2 + a_3 \psi _3 \nonumber \\ \hat H &\psi _i = E_i \psi _i \nonumber \\ \langle \psi _i &| \psi _j \rangle = \delta _{ij} \nonumber \end{align}$$
I also normalized ##\Phi## as ##N=\left( \sum_{1}^3 a_{i}^2 \right)^{-1/2}## and solved ##\bar E = \langle \Phi | \hat H | \Phi \rangle = N^2 \sum_i \left( a_i^2 E_i \right) ## in previous exercises.

Thank you!
 
Physics news on Phys.org
1. Yes
2. Consider an operator ##\hat{A}## with an eigenvector-eigenvalue pair ##v, A##. Then ##\hat{A}^{2}v = \hat{A}(\hat{A}\psi) = \hat{A}(Av) = A(\hat{A}v) = A^{2}v##
 
  • Like
Likes blaisem
Perfect! I should be good from here on out. Thanks for the help getting started.
 
  • Like
Likes GwtBc
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 47 ·
2
Replies
47
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K