Question on group theory: simplest math construction

Abolaban
Messages
13
Reaction score
0
Hello Big Minds,

In the following analysis...It is said that D_2 contains three subgroups Z_2...why did he choose a mathematical constuction contains only two of the the three subgroups? shouldn't he use the three in his construction? what will happen if he used the three?

upload_2015-2-1_10-52-31.png

[from the book of P.Ramond, Group Theory, p8.]

best regards

Abolaban
 
Last edited:
Physics news on Phys.org
How many distinct elements would the direct product group have if he used 3 subgroups, each with 2 elements in them? If a direct product has 8 elements , it can't be isomorphic to a group with only 4 elements in it. His goal was to write an direct product that is essentially the same group as the 4 element group.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top