43arcsec
- 37
- 4
Hi Forum, I am trying to follow the math in Bell's original paper, and I am getting tripped up on equation (14). Does anyone know the mathematic legerdemain Bell used to go from the first equation below to the 2nd?
<br /> <br /> \begin{align}<br /> P(\vec{a},\vec{b})-P(\vec{a},\vec{c})=-\int{d\lambda\rho(\lambda)[A(\vec{a},\lambda)A(\vec{b},\lambda)-A(\vec{a},\lambda)A(\vec{c},\lambda)]}<br /> \\<br /> <br /> =\int{d\lambda\rho(\lambda)A(\vec{a},\lambda)A(\vec{b},\lambda)[A(\vec{b},\lambda)A(\vec{c},\lambda)-1]}<br /> <br /> <br /> \end{align}<br /> <br /> <br /> <br />
Here is a link to the original paper:
http://www.drchinese.com/David/Bell.pdf
I hope I am not missing something trivial, but thanks for you help!
<br /> <br /> \begin{align}<br /> P(\vec{a},\vec{b})-P(\vec{a},\vec{c})=-\int{d\lambda\rho(\lambda)[A(\vec{a},\lambda)A(\vec{b},\lambda)-A(\vec{a},\lambda)A(\vec{c},\lambda)]}<br /> \\<br /> <br /> =\int{d\lambda\rho(\lambda)A(\vec{a},\lambda)A(\vec{b},\lambda)[A(\vec{b},\lambda)A(\vec{c},\lambda)-1]}<br /> <br /> <br /> \end{align}<br /> <br /> <br /> <br />
Here is a link to the original paper:
http://www.drchinese.com/David/Bell.pdf
I hope I am not missing something trivial, but thanks for you help!