# Question on moment of inertia

#### Wen

I have been thinking for an hour and i still couldn't get the answer for this qns. It involve moment of inertia.

a uniform solid disk, radius R and mass M, free to rotate about a frictionless pivot on a point on its rim.It is released from a position where the centre of mass is horizontal to its pivot, and its allowed to swing till the centre of mass is vertically below. What is the speed of the centre of mass when is at that position?

My solution

moment of inertia=Icm+MR^2
moment of inertia= 1/2 MR^2 +MR^2=3/2 MR^2
Torque=moment of inertia X angular a
Mg R= 3/2 MR^2 a
a=2g/3R
Final angular v (Wf)^2= Wi^2 +2a(angular displacement)
Wf^2= 0 +2(2g/3R)(pi/4)
Wf can be found
V of the centre of mass , R distance away from the pivot= RWf

However, the answer in the book is 2 (Rg/3)^0.5

Related Introductory Physics Homework News on Phys.org

#### mukundpa

Homework Helper
Think ... Whether the torque is constant?(NOOO). The angular acceleration is non uniform. The equation used, is it true for non uniform accelerations?

Batter to use energy conservation.

#### Fermat

Homework Helper
The torque is variable.
Instead of being T = MgR, it's more like T = MgR.cosθ

Hint: d²θ/dt² = dω/dt = dω/dθ.dθ/dt = ω.dω/dθ

so use: d²θ/dt²= ω.dω/dθ

#### Wen

So i get MgRcosQ=3/2R.w.dw/dQ

I am stuck again?

#### Wen

Hurray!!!
I got it!!!
MgRcos Q=I A Q=angle btw g and the F(in the direction of v)
I cm = integrate r^2dm(limit:R to 0)

=inte.r^2(2pir)DXdr X=thickness, D=density
....
=1/2MR^2
Since axis is not abt the COM

I= Icm+MR^2
=3/2MR^2

.;MgcosQ=3/2MR^2.A
A can be found

Wf^2=Wi^2+2AQ
=0+2{2gCosQ/3R)dQ
Since Q varies from 0 to the position( pi/4)

Wf^2=inte. 4gcos Q/3R. dQ (limit: pi/4 to 0)
=[4gSinQ/3R]
=4g/3R
Wf =root 4g/3R
V =R root 4g/3R

Thanks everyone

#### mukundpa

Homework Helper
Can be done using energy conservation as

loss in PE = gain in RKE
MgR = 0.5 I w^2
MgR = 0.5(1.5MR^2)v^2/R^2
v^2 = 4gR/3

#### j3w3ls

What if, instead of uniform solid disk, a uniform hoop is used? what's the Vcm then? Thanks!

"Question on moment of inertia"

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving