In the Penrose diagram for Shwarzschild, two degrees of freedom (theta and phi) are suppressed, so a curve r = const is produced by fixing r and letting t vary. Thus, the nature of r = const is greatly influenced by the nature of t.
Now, a definition. A hypersurface is called timelike (spacelike) if the normal 4-vector to the surface is everywhere spacelike (timelike). This does not necessarily mean that, for example, if r is a timelike coordinate, the r = const is a spacelike hypersurface.
For example consider a two-dimensional Minkowski spacetime that is the span of the orthonomal basis {e_0 , e_1}, with e_0 (e_1) being timelike (spacelike). The set {e_0 , e_0 + 1/2 e_1} also spans this space. Use this latter set to coordinatize the space, that is, write any position vector as X^1 e_0 + X^2 (e_0 + 1/2 e_1). Both X^1 and X^2 are timelike coordinates.
Consider the surface (here, a line) X^2 = const. This means fixing X^2 and letting X^1 vary. This produces a timelike line parallel to the timelike X^1 axis, so X^2 = const is a timelike surface (since anything normal to something timelike is itself spacelike) even though X^2 is a timelike coordinate.
Now consider a three-dimensional Minkowski spacetime without (the standard) x^3, and define r^2 = (x^1)^2 + (x^2)^2 in the usual way. The surface r = const is the surface of a cylinder that goes up the t axis. On this cylinder, both spacelike and timelike motions are possible, but, by the above definition, the surface is timellike since its normal is spacelike. On a Penrose diagram, the polar angle theta = tan^-1(x^2/x^1) would be suppressed, so the cylindrical surface r = const would be the timelike line obtained by letting t vary. Howver, each point on the line, say at t = a, actually represents the circle obtainded by the intersection of the plane t = a with the the cylinder r = const. in the original spacetime.
Finally, back to Schwarzschild.
Inside the event horizon, t is a spacelike coordinate, so the Penrose diagram curve produced by fixing r and varying t is spacelike. Each point on the curve represents the two-dimensional surface of a sphere.