I Question on Primitive Roots and GCDs

  • I
  • Thread starter Thread starter Albert01
  • Start date Start date
  • Tags Tags
    Gcd
Albert01
Messages
14
Reaction score
0
I have a question about a certain fact from the book of Nussbaumer "Fast Fourier Transform and Convolution Algorithms" in the chapter of Number-theoretic transformation. I have quoted the relevant passage once.

There it says:

##(g^t -1)S \equiv g^{Nt} - 1 \equiv 0 \text{ mod } q \quad (1)##

Thus, ##S \equiv 0## provided ##g^t - 1 \not\equiv 0 \text{ mod } q## for ##t \not\equiv 0 \text{ mod } N##. This implies that ##g## must be a root of unity of order ##N \text{ mod } q##, that is to say, ##g## must be an integer such that ##N## is the smallest nonzero integer for which ##g^N \equiv 1 \text{ mod } q##.

This quotation refers to ##q## being a prime number. But then it continues with a consideration of ##q## as a composite number. There it is stated:

Equation ##(1)## implies not only that ##g## is a root of order ##N \text{ mod } q##, but also, since ##q## is composite, that ##[(g^t-1), q] = 1##.
Questions:

  • My question is actually "only" how one comes to the conclusion that from equation ##(1)## follows ##[(g^t-1), q] = 1##, when ##q## is composite; and what benefit you get out of it.
  • A second question that follows from this would then be whether ##[(g^t-1), q] = 1## (must) hold for ##t=1,...,N-1##?
 
Physics news on Phys.org
Albert01 said:
I have a question about a certain fact from the book of Nussbaumer "Fast Fourier Transform and Convolution Algorithms" in the chapter of Number-theoretic transformation. I have quoted the relevant passage once.

There it says:
This quotation refers to ##q## being a prime number. But then it continues with a consideration of ##q## as a composite number. There it is stated:

Albert01 said:
Questions:

  • My question is actually "only" how one comes to the conclusion that from equation ##(1)## follows ##[(g^t-1), q] = 1##, when ##q## is composite; and what benefit you get out of it.
It doesn't fillow. It is an additional requirement in oder to have the same conclusion.
Albert01 said:
  • A second question that follows from this would then be whether ##[(g^t-1), q] = 1## (must) hold for ##t=1,...,N-1##?
Isn't ##t## fixed?
 
Hi @martinbn,

martinbn said:
It doesn't fillow. It is an additional requirement in oder to have the same conclusion.

Can you please explain this a little bit more?



If ##\text{gcd}(g^t-1,q) = 1## we can write ##(g^t-1) \cdot x + q \cdot y = 1##. On the other hand, we have ##g^t-1 \not\equiv 0 \text{ mod } q##, which we can write as ##g^t-1 \neq 0 + c \cdot q##. I don't see now how far you get to the same conclusion.



Should I add more info (to the passage from the textbook)?
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top