I Question on Primitive Roots and GCDs

  • Thread starter Thread starter Albert01
  • Start date Start date
  • Tags Tags
    Gcd
Albert01
Messages
14
Reaction score
0
I have a question about a certain fact from the book of Nussbaumer "Fast Fourier Transform and Convolution Algorithms" in the chapter of Number-theoretic transformation. I have quoted the relevant passage once.

There it says:

##(g^t -1)S \equiv g^{Nt} - 1 \equiv 0 \text{ mod } q \quad (1)##

Thus, ##S \equiv 0## provided ##g^t - 1 \not\equiv 0 \text{ mod } q## for ##t \not\equiv 0 \text{ mod } N##. This implies that ##g## must be a root of unity of order ##N \text{ mod } q##, that is to say, ##g## must be an integer such that ##N## is the smallest nonzero integer for which ##g^N \equiv 1 \text{ mod } q##.

This quotation refers to ##q## being a prime number. But then it continues with a consideration of ##q## as a composite number. There it is stated:

Equation ##(1)## implies not only that ##g## is a root of order ##N \text{ mod } q##, but also, since ##q## is composite, that ##[(g^t-1), q] = 1##.
Questions:

  • My question is actually "only" how one comes to the conclusion that from equation ##(1)## follows ##[(g^t-1), q] = 1##, when ##q## is composite; and what benefit you get out of it.
  • A second question that follows from this would then be whether ##[(g^t-1), q] = 1## (must) hold for ##t=1,...,N-1##?
 
Physics news on Phys.org
Albert01 said:
I have a question about a certain fact from the book of Nussbaumer "Fast Fourier Transform and Convolution Algorithms" in the chapter of Number-theoretic transformation. I have quoted the relevant passage once.

There it says:
This quotation refers to ##q## being a prime number. But then it continues with a consideration of ##q## as a composite number. There it is stated:

Albert01 said:
Questions:

  • My question is actually "only" how one comes to the conclusion that from equation ##(1)## follows ##[(g^t-1), q] = 1##, when ##q## is composite; and what benefit you get out of it.
It doesn't fillow. It is an additional requirement in oder to have the same conclusion.
Albert01 said:
  • A second question that follows from this would then be whether ##[(g^t-1), q] = 1## (must) hold for ##t=1,...,N-1##?
Isn't ##t## fixed?
 
Hi @martinbn,

martinbn said:
It doesn't fillow. It is an additional requirement in oder to have the same conclusion.

Can you please explain this a little bit more?



If ##\text{gcd}(g^t-1,q) = 1## we can write ##(g^t-1) \cdot x + q \cdot y = 1##. On the other hand, we have ##g^t-1 \not\equiv 0 \text{ mod } q##, which we can write as ##g^t-1 \neq 0 + c \cdot q##. I don't see now how far you get to the same conclusion.



Should I add more info (to the passage from the textbook)?
 
Last edited:
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
Replies
48
Views
4K
  • · Replies 3 ·
Replies
3
Views
478
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
764
  • · Replies 26 ·
Replies
26
Views
724
  • · Replies 12 ·
Replies
12
Views
486
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K