Question + Problem on Collision/momentum

  • Thread starter Thread starter rawimpact
  • Start date Start date
AI Thread Summary
A block of mass 1.3 kg is at rest on a frictionless 40-degree ramp when it is struck by a bullet of mass 50 g traveling at 250 m/s, which exits the block at 100 m/s. The initial velocity of the block after the collision is calculated to be 5.7 m/s using conservation of momentum. To determine how far the block travels up the ramp, the acceleration due to gravity along the ramp is found to be -6.29 m/s². Using kinematic equations, the distance traveled up the ramp is calculated to be approximately 2.58 m, but the answer key suggests 2.65 m, indicating a potential rounding error in calculations. The discussion emphasizes the importance of avoiding premature rounding in physics problems to achieve more accurate results.
rawimpact
Messages
14
Reaction score
0
1. A block of mass 1.3kg is resting at the base of a frictionless 40-degree ramp. A bullet of mass 50g is traveling parallel to the ramp's surface at 250 m/s. It collides with the block, enters it, and exits the other side at 100 m/s. How far up the ramp will the block travel?


http://img26.imageshack.us/img26/7883/60347116.png


2. M1V1+M2V2=M1V1'+M2V2' to solve for velocity. sumFx=M*A to find acceleration, and V'^2=V^2 +2adX, V = initial velocity, V' = final velocity, dX = delta or change in distance, and a = acceleration



3. So first we need to find the velocity of the block, so we use the first equation (M1V1+M2V2=M1V1'+M2V2' ) to get: (0.05)(250)+(1.3)(0) = (0.05)(100)+(1.3)(V2'), solving it gives us V2'=5.7m/s

We then use this velocity as the initial because the block starts moving up the ramp. It will stop on the ramp, so final velocity V' = 0 m/s. We have to find the acceleration, and to make this easier we can make the problem one demensional. We set the ramp's surface as the X-axis and then find find Wx (force due to gravity pushing the block down the ramp). The weight = (1.3+0.05)(9.8)= 13.23. I set the problem so moving up the ramp is in the positive direction. so the summation problem looks like -Wx=M*A. I can now solve for acceleration as (-13.23(sin(40)))/1.35 = a = -6.29. We have a negative acceleration because gravity is pushing the opposite direction. So now that i have V, V', and a, i can use the equation V'^2=V^2+2adX to get 0=5.7^2+2(-6.29)dX dX=2.58m


The answer key shows the answer to be 2.65, so is this due to rounding or a problem during my steps?
 
Last edited by a moderator:
Physics news on Phys.org
It's roundoff error--your method is fine.
rawimpact said:
3. So first we need to find the velocity of the block, so we use the first equation (M1V1+M2V2=M1V1'+M2V2' ) to get: (0.05)(250)+(1.3)(0) = (0.05)(100)+(1.3)(V2'), solving it gives us V2'=5.7m/s
Recalculate that speed. (Don't round off until the very last step in your calculations.)
 
Thanks Doc
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top