yungman
- 5,741
- 294
In am studying PDE and I have question about D'Alembert solution for one dimension wave equation.
I am going to reference Wolfram:
http://mathworld.wolfram.com/dAlembertsSolution.html
1) I want to verify the step of \frac{\partial y_0}{\partial t} of step (14) of the page.
\Rightarrow\; \frac{\partial y_0}{\partial t}=v_0\; =\; \frac{ \partial f(x-ct)}{\partial (x-ct) } \frac{ \partial (x-ct)}{\partial t }\; + \;\frac{ \partial g(x+ct)}{\partial (x+ct) } \frac{ \partial (x+ct)}{\partial t }
=\; c[\frac{ \partial f(x-ct)}{\partial (x-ct) }\;- \; \frac{ \partial g(x+ct)}{\partial (x+ct) }]|_{t=0} \;= \; -c\frac{ \partial f(x)}{\partial (x) }\;+ \; c\frac{ \partial g(x)}{\partial (x) } \;=\; -cf'(x)+cg'(x)\;\;\; (14)
Am I correct on the steps?
2) I don't follow step (16)
\int_{\alpha} ^x \; v_0(s)\; ds = -cf(x) +cg(x) \;\;\; (16)
a) Where is s come from? Is it just a dummy variable for substitude for x and \alpha later?
Where is \alpha come from?? Is it supposed to be 0 instead?
b) \int_{\alpha} ^x \; v_0(s)\; ds = \int_{\alpha} ^x -cf'(x) +cg'(x) \; = [-cf(x)+cg(x)]_{\alpha}^x
This don't agree with \int_{\alpha} ^x \; v_0(s)\; ds = -cf(x) +cg(x) \;\;\; (16)
Please refer to (14) and (16) in Wolfram page.
I am going to reference Wolfram:
http://mathworld.wolfram.com/dAlembertsSolution.html
1) I want to verify the step of \frac{\partial y_0}{\partial t} of step (14) of the page.
\Rightarrow\; \frac{\partial y_0}{\partial t}=v_0\; =\; \frac{ \partial f(x-ct)}{\partial (x-ct) } \frac{ \partial (x-ct)}{\partial t }\; + \;\frac{ \partial g(x+ct)}{\partial (x+ct) } \frac{ \partial (x+ct)}{\partial t }
=\; c[\frac{ \partial f(x-ct)}{\partial (x-ct) }\;- \; \frac{ \partial g(x+ct)}{\partial (x+ct) }]|_{t=0} \;= \; -c\frac{ \partial f(x)}{\partial (x) }\;+ \; c\frac{ \partial g(x)}{\partial (x) } \;=\; -cf'(x)+cg'(x)\;\;\; (14)
Am I correct on the steps?
2) I don't follow step (16)
\int_{\alpha} ^x \; v_0(s)\; ds = -cf(x) +cg(x) \;\;\; (16)
a) Where is s come from? Is it just a dummy variable for substitude for x and \alpha later?
Where is \alpha come from?? Is it supposed to be 0 instead?
b) \int_{\alpha} ^x \; v_0(s)\; ds = \int_{\alpha} ^x -cf'(x) +cg'(x) \; = [-cf(x)+cg(x)]_{\alpha}^x
This don't agree with \int_{\alpha} ^x \; v_0(s)\; ds = -cf(x) +cg(x) \;\;\; (16)
Please refer to (14) and (16) in Wolfram page.
Last edited: