Question regarding finitely generated modules

  • Thread starter Thread starter Amked
  • Start date Start date
  • Tags Tags
    Modules
Amked
Messages
3
Reaction score
0
I am supposed to show that the following are equivalent for a finitely generated module P:

1. P is Projective
2. P is isomorphic to direct summand of a free module
(There are 2 others but they refer to a diagram)

I am stuck on showing 1 => 2.

I know that since P is projective there is α: M -> P so that
M is isomorphic to ker (α) (direct sum) K,
where K is a subset of P.
Also since P is finitely generated P = Rx1 (direct sum) … (direct sum)Rxn.

I also know that K is isomophic to M/ker(α)

I believe I need to show that P = K, because then P would be isomorphic to a direct summand, but I don’t know how to show this.
 
Physics news on Phys.org
I have recently noticed that my definition of Projective is incorect.
A module P is projective provided:
If f:M -> P is a homomorphism and onto then M = ker(f) (direct sum) K,
K contained in P.

Hopefully that makes my question easier.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top