Question regarding inverse functions

michellemich
Messages
1
Reaction score
0
f(x) where x belongs to all real numbers
inverse: f-1(x), where x belongs to all real numbers

True or False:
The inverse of f(x+3) is f-1(x+3)

My ideas:
I think that it is false given that when you usually find the inverse of a function, you switch the x and y variables and solve for y again meaning that the inverse couldn't stay the same.
I figured since the domain and range of f(x) belong to all real numbers, possibly f(x) = x and then inputting f(x+3) = x+ 3
then y = x+3
then y = x - 3 but I am not really sure if that's right :s
 
Mathematics news on Phys.org
michellemich said:
f(x) where x belongs to all real numbers
inverse: f-1(x), where x belongs to all real numbers

True or False:
The inverse of f(x+3) is f-1(x+3)

My ideas:
I think that it is false given that when you usually find the inverse of a function, you switch the x and y variables and solve for y again meaning that the inverse couldn't stay the same.
I figured since the domain and range of f(x) belong to all real numbers, possibly f(x) = x and then inputting f(x+3) = x+ 3
then y = x+3
then y = x - 3 but I am not really sure if that's right :s

You are given that ##f## has an inverse ##f^{-1}##. What happens when you solve the equation ##y=f(x+3)## for ##x##?
 
Good Day michellemich!

If you are not sure of your answer, try some composition: let your original function be f(x)and your questionable inverse function be g(x)

Evaluate (f of g) and (g of f). If they undo each other, they are inverses.
 
If you want to know if this is true for all invertible functions, it is simple enough to find a counterexample.

If, say, f(x)= 2x+ 3, then f(x)= 3x- 2, then f^{-1}(x)= (x+ 2)/3. f(x+3)= 3(x+ 3)- 2= 3x+ 7. The inverse of that function is (x- 7)/3. Is that equal to f^{-1}(x+ 3)= (x+3+ 2)/3= (x+ 5)/3?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top