yungman
- 5,741
- 294
Let \;P(R,\theta,\phi)\; be function at each point defined by R,\theta,\phi in spherical coordinates.
Let \;P_{max} \; be the maximum value of \;P(R,\theta,\phi)\; in the closed sphere S.
\hbox {Let }\;F(R,\theta,\phi)=\frac {P(R,\theta,\phi)}{P_{max}}
Which is the normalized value of \;P(R,\theta,\phi)\; \hbox {where } \; F_{max} = 1.
My question is whether:
\frac {P(R,\theta,\phi)}{\oint_S P(R,\theta,\phi) d\;S}\; =\; \frac {F(R,\theta,\phi)}{\oint_S F(R,\theta,\phi) d\;S}
I thought
\frac {\left [\frac {P(R,\theta,\phi)}{P_{max}}\right ]} {\left [\frac {\oint_S P(R,\theta,\phi) d\;S}{P_{max}}\right ]} \;\hbox { not equal to } \; \frac {F(R,\theta,\phi)}{\oint_S F(R,\theta,\phi) d\;S}
Unless we can consider \;P_{max}\; is a constant and can be moved inside the integration. So the question is whether \;P_{max}\; is a constant? I am not sure.
Please help.
Thanks
Alan
Let \;P_{max} \; be the maximum value of \;P(R,\theta,\phi)\; in the closed sphere S.
\hbox {Let }\;F(R,\theta,\phi)=\frac {P(R,\theta,\phi)}{P_{max}}
Which is the normalized value of \;P(R,\theta,\phi)\; \hbox {where } \; F_{max} = 1.
My question is whether:
\frac {P(R,\theta,\phi)}{\oint_S P(R,\theta,\phi) d\;S}\; =\; \frac {F(R,\theta,\phi)}{\oint_S F(R,\theta,\phi) d\;S}
I thought
\frac {\left [\frac {P(R,\theta,\phi)}{P_{max}}\right ]} {\left [\frac {\oint_S P(R,\theta,\phi) d\;S}{P_{max}}\right ]} \;\hbox { not equal to } \; \frac {F(R,\theta,\phi)}{\oint_S F(R,\theta,\phi) d\;S}
Unless we can consider \;P_{max}\; is a constant and can be moved inside the integration. So the question is whether \;P_{max}\; is a constant? I am not sure.
Please help.
Thanks
Alan
Last edited: