Questioning the Invertibility of a Linear Operator T

typhoonss821
Messages
13
Reaction score
1
I have a question about the invertibility of a linear operator T.

In Friedberg's book, Theorem 6.18 (c) claims that if B is an orthonormal basis for a finite-dimensional inner product space V, then T(B) is an orthonromal basis for V.

I don't understand the proof, I think the book only prove that T(B) is orthonormal.

If T is not one-to-one, why T(B) is also linear independent?
 
Physics news on Phys.org
You're right.. T(B) need not be linearly independent if T isn't injective.

But what hypothesis on T does the book make exactly?

Because it is not true that any linear operator, even invertible ones send orthonormal basis to orthonormal basis.
 
quasar987 said:
Because it is not true that any linear operator, even invertible ones send orthonormal basis to orthonormal basis.

Could you explain why an invertible linear operator can't send orthonormal basis to orthonormal basis?
 
Last edited:
?? You started by saying that you understood the proof that an invertible linear operator sends an orthonormal basis into an orthonormal basis. Now you are asking why that can't be true?

If T maps a finite dimensional space to a finite dimensional space and is invertible, then it maps a basis to a basis. If the spaces are not finite dimensional, that may not be true.
 
typhoonss821 said:
Could you explain why an invertible linear operator can't send orthonormal basis to orthonormal basis?

I'm not saying an invertible linear operator can't send orthonormal basis to orthonormal basis, I'm saying that it can, but in general, it wont.

Consider for instance T:R²-->R² given by T(x,y)=(x+y,y). It is an invertible linear operator that sends the orthonormal basis {(1,0), (0,1)} to the non orthonormal basis {(1,0), (1,1)}.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top