- #1

- 1

- 0

At Colorado State University, I appreciate my classes for their rigor and teaching me everything I need to know, but sometimes professors, even really good professors, teach alot of theory with complex equations and math without really showing its applications that much. It wasn't really until Thermodynamics that the professor, who was beyond brilliant, would tell us applications and even took us out to the local coal plant to see how thermodynamics is used. I finally could appreciate how some of the beautiful theory is applied to real engineering. My ordinary Differential Equations instructor also mentioned modeling internal combustion engines with it.

I feel like cars are very underestimated by the general public. My generalized impression is that many people are somewhat ignorant that cars are these marvels of modern engineering and there is a crazy amount of math and physics involved in making these. And even though they have downfalls, such as emissions, I love internal combustion engines. Not to mention with modern emission controls like EGR and Cold Start Catalysts, and advanced computer systems and tuning, cars are becoming amazingly environmentally friendly compared to their predecessors, although still not perfect.

But I wanted to ask if you guys could provide any specific applications of advanced physics of math being used in automotive engineering, and perhaps tell me if these applications bellow are infact correct? Thanks

-Vector/Multivariable Calculus in computational fluid mechanics/ aerodynamics for modeling flow such as Stoke's Theorem, Green's, Divergence, ETC as well as riemman sums

-Precise definition of a limit in component tolerances

-obviously Statics and Dynamics for chassis design, unibodies, gear systems such as teeth curvature in the differential and transmission, most classical mechanics applications

-Ordinary/Partial Differential Equations used to design camshafts and lobes

-Laplace Transforms for modern engine management systems and NVH (Noise, Vibration, Harshness) and cruise control/self driving technologies?

-EMF and Faraday's law in alternators

Can somebody more knowledgeable provide some other examples? I'd be very interested to know, thanks.

What's crazy is my university is supposed to be a very applied program relative to other schools and it still seems very theoretical at that. But I've only taken a few 300 level classes and the ones coming up should be much more applied.