Quick Question, just want to know if these are equalivant

  • Thread starter Thread starter Windowmaker
  • Start date Start date
Windowmaker
Messages
68
Reaction score
0
Ive solved an indefinite integral and the answer is this

ln(x^2+x-2)

My question is:

ln(x^2+x-2) = ln (x-1) +ln( x +2 )

Or are they different?
 
Physics news on Phys.org
ln(ab) = ln(a) + ln(b)
 
Sweet thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top