Quick Question of convergence/divergence of an endpoint of an interval

  • Thread starter Thread starter anniecvc
  • Start date Start date
  • Tags Tags
    Interval
anniecvc
Messages
28
Reaction score
0

Homework Statement


I have found the interval of convergence for the series
Ʃ (xn)/(3nn2) to be -3>x>3 and have tested +3 to break down to p series 1/n2 which converges.

However I am unsure of the negative endpoint of 3.
If I plug it in, the series looks like Ʃ(-3)n/(3nn2).
By alternating series test, the series should converge, but that is when the alternation is between -1 and 1. Here I have -3, which will alternate between larger and larger factors of 3 and -3. The denominator is 3n which given alone with the numerator would diverge, even though the denominator is multiplied by n2, I feel it is not sufficiently large enough for the limit to go to 0 as n -> ∞, since an exponential function grows more quickly than a quadratic.

I want to say it diverges, but don't have solid proof. Thoughts?
 
Last edited:
Physics news on Phys.org
anniecvc said:

Homework Statement


I have found the interval of convergence for the series
Ʃ (xn)/(3nn2) to be -3>x>3 and have tested +3 to break down to p series 1/n2 which converges.

However I am unsure of the negative endpoint of 3.
If I plug it in, the series looks like Ʃ(-3)n/(3nn2).
By alternating series test, the series should converge, but that is when the alternation is between -1 and 1. Here I have -3, which will alternate between larger and larger factors of 3 and -3. The denominator is 3n which given alone with the numerator would diverge, even though the denominator is multiplied by n2, I feel it is not sufficiently large enough for the limit to go to 0 as n -> ∞, since an exponential function grows more quickly than a quadratic.

I want to say it diverges, but don't have solid proof. Thoughts?

That simplifies to$$
\sum \frac {(-1)^n}{n^2}$$doesn't it? What does the alternating series test say about this?
 
(-3)^n/3^n=(-1)^n. I'm really not sure what you are worried about.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top