Radiation back reaction in classical electrodynamics

Click For Summary
SUMMARY

The discussion centers on the unresolved issues surrounding radiation reaction forces in classical electrodynamics, particularly for point particles. The Landau-Lifshitz approximation to the Lorentz-Abraham-Dirac equation is identified as the most effective classical treatment, as noted in C. Nakhleh's work from 2013. Coupling Maxwell's equations to dynamical extended bodies, such as charged fluids, does not exhibit the same issues as point sources, and extended bodies with finite charge densities are considered physically reasonable. However, the mathematical soundness of classical electrodynamics coupled with fluid dynamics remains uncertain, with no definitive breakthroughs reported.

PREREQUISITES
  • Understanding of classical electrodynamics principles
  • Familiarity with Maxwell's equations
  • Knowledge of the Lorentz-Abraham-Dirac equation
  • Basic concepts of fluid dynamics in physics
NEXT STEPS
  • Research the Landau-Lifshitz approximation and its applications in radiation reaction
  • Explore the implications of the Lorentz-Abraham-Dirac equation in classical electrodynamics
  • Investigate the mathematical frameworks for existence and uniqueness in fluid dynamics
  • Examine quantum-Langevin approaches to radiation reaction and their classical implications
USEFUL FOR

Physicists, researchers in classical electrodynamics, and mathematicians interested in the intersection of fluid dynamics and electromagnetic theory.

HomogenousCow
Messages
736
Reaction score
213
I've been doing some research on the topic of radiation reaction force/self force in classical electrodynamics and although there are some discussions on the internet I would like direct answers to these following questions:

  1. Is there a rigorous and universally accepted treatment of radiation reaction force in classical electrodynamics for point particles? If so what was the breakthrough that solved the issues plaguing the seminal works such as pre-acceleration and runaway solutions?
  2. If we couple Maxwell's equations to a dynamical extended body, such as a charged fluid, do the resulting equations suffer from the typical issues encountered with point sources? And if not, does this treatment predict radiation reaction force that is physically reasonable?
  3. Is classical electrodynamics coupled to fluid dynamics a mathematically sound theory? As in, are there results on the existence and uniqueness of solutions in this theory.
 
  • Like
Likes   Reactions: vanhees71
Physics news on Phys.org
HomogenousCow said:
If so what was the breakthrough that solved the issues plaguing the seminal works such as pre-acceleration and runaway solutions?
There is no such breakthrough. Those issues remain unresolved.

HomogenousCow said:
If we couple Maxwell's equations to a dynamical extended body, such as a charged fluid, do the resulting equations suffer from the typical issues encountered with point sources? And if not, does this treatment predict radiation reaction force that is physically reasonable?
Extended bodies with charge densities that are everywhere finite are physically reasonable.

HomogenousCow said:
Is classical electrodynamics coupled to fluid dynamics a mathematically sound theory? As in, are there results on the existence and uniqueness of solutions in this theory.
I don’t know, but I am not aware of problems like those with classical point particles.
 
  • Like
Likes   Reactions: vanhees71 and jasonRF
HomogenousCow said:
Is classical electrodynamics coupled to fluid dynamics a mathematically sound theory? As in, are there results on the existence and uniqueness of solutions in this theory.
I don't know if existence and uniqueness has been settled (I really doubt it), but a 30-second google search yielded some interesting hits like
https://www.jstor.org/stable/20209485
http://wrap.warwick.ac.uk/66955/
This is more in the realm of mathematics than physics, in that few physicists probably have the tools (or inclination) to make much progress on that front.

Even if those issues haven't been resolved, fluid models of plasmas have been pretty successful at describing physical phenomena. So have the more accurate kinetic models that can be used to derive fluid models by taking velocity-space moments.

jason
 
  • Like
Likes   Reactions: vanhees71 and Dale
According to "numerical studies" the best we have on the classical level concerning the radiation-reaction problem is the Landau-Lifshitz approximation to the Lorentz-Abraham-Dirac equation. For a nice treatment, see

C. Nakhleh, The Lorentz-Dirac and Landau-Lifshitz equations from the perspective of
modern renormalization theory, Am. J. Phys 81, 180 (2013),
https://dx.doi.org/10.1119/1.4773292.
https://arxiv.org/abs/1207.1745

K. Lechner, Classical Electrodynamics, Springer International Publishing AG, Cham
(2018), https://doi.org/10.1007/978-3-319-91809-9
 
  • Like
Likes   Reactions: Dale and jasonRF
In his derivation, Lechner states on page 467, "Ultimately the Lorentz Dirac equation must be postulated."
 
But the LAD equation is not the solution! The Landau-Lifshitz approximation is much better. A quantum-Langevin approach (at least for the non-relativistic case) suggests that the real matter is a non-Markovian description on the classical level, which avoids all the problems of the LAD equation right away. For this, see

G. W. Ford, J. T. Lewis and R. F. O’Connell, Quantum
Langevin equation, Phys. Rev. A 37, 4419 (1988),
https://doi.org/10.1103/PhysRevA.37.4419

or

https://doi.org/10.1016/0375-9601(91)90054-C
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
540
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K