- #1

- 165

- 1

## Homework Statement

Consider radiation perpendicularly incident to a plane whose index of refraction is n. Show that the reflected wave can be eliminated by covering the plane with a second dielectric layer with index of [itex]\sqrt{n}[/itex] and thickness 1/4 wavelength.

## Homework Equations

Boundary conditions: [itex]E_{1}^{||}=E_{2}^{||}[/itex], and [itex]B_{1}^{||}=B_{2}^{||}[/itex]

## The Attempt at a Solution

Electric and Magnetic field at z=0 can be given by:

[itex]{E_{I}(z,t)=E_{I}exp[i(k_{1}z-\omega t)],E_{R}(z,t)=E_{R}exp[i(-k_{1}z-\omega t)]},{B_{I}(z,t)=\frac{1}{v_{1}}E_{I}exp[i(k_{1}z-\omega t)],B_{R}(z,t)=\frac{1}{v_{1}}E_{R}exp[i(-k_{1}z-\omega t)]}[/itex]

For 0<z<[itex]\frac{\lambda}{4}[/itex]:

[itex]{E_{i}(z,t)=E_{i}exp[i(k_{2}z-\omega t)],E_{r}(z,t)=E_{r}exp[i(-k_{2}z-\omega t)]},{B_{i}(z,t)=\frac{1}{v_{1}}E_{i}exp[i(k_{2}z-\omega t)],B_{r}(z,t)=\frac{1}{v_{1}}E_{r}exp[i(-k_{2}z-\omega t)]}[/itex]

For z>[itex]\frac{\lambda}{4}[/itex]:

[itex]{E_{T}(z,t)=E_{T}exp[i(k_{3}z-\omega t)]},{B_{T}(z,t)=\frac{1}{v_{1}}E_{I}exp[i(k_{3}z-\omega t)]}[/itex]

These boundary conditions allow us to find simultaneous equations for z=0 and z=[itex]\frac{\lambda}{4}[/itex]:

z=0 => [itex]{E_{I}+E_{R}=E_{r}+E_{i}, E_{I}-E_{R}=\beta (E_{r}-E_{i})}[/itex]

z=[itex]\frac{\lambda}{4}[/itex]=> [itex]{E_{r}exp[ik_{2}\frac{\lambda}{4}]+E_{i}exp[-ik_{2}\frac{\lambda}{4}]=E_{T}exp[ik_{3}\frac{\lambda}{4}], E_{r}exp[ik_{2}\frac{\lambda}{4}]-E_{i}exp[-ik_{2}\frac{\lambda}{4}]=\alpha E_{T}exp[ik_{3}\frac{\lambda}{4}]}[/itex]

Here, [itex]\alpha =\frac{v_{2}}{v_{3}}[/itex], [itex]\beta =\frac{v_{1}}{v_{2}}[/itex]

I have done plenty of algebra to find [itex]E_{I}[/itex] in terms of [itex]E_{R}[/itex], but this seems to require more information than I have. I am just not seeing the end from here, does anyone have a suggestion on where to go from this point?