Radio wave propagation in water

AI Thread Summary
Radio wave propagation in conductive media like water is poor due to high absorption and low transmission efficiency, particularly at higher frequencies. This is influenced by "skin depth," which describes how electromagnetic waves penetrate conductive materials. In conductive media, energy is absorbed and dissipated as heat, making them act like large antennas that do not effectively transmit signals. Submarines utilize extremely low frequency signals to communicate underwater, as these frequencies can penetrate deeper due to greater skin depth, but require long antennas for effective transmission. Understanding these principles is crucial for grasping the challenges of radio communication in such environments.
sirch
Messages
2
Reaction score
0
I'm trying to get my head around radio wave propagation in conductive media such as water, saturated rock, etc. What I know is that propagation is poor but better at lower frequencies and this has something to do with "skin depth". I have read what I can on skin depth but I struggle to relate it to a bulk medium such as a body of water.

Is there a simple explanation of why conductive media are poor transmitters of radio energy? After all we use conductors to carry RF. Is it because a radio essentially detects the signal difference between two points (antenna and ground for example) and in a body of water the signal just bleeds away to ground?
 
Science news on Phys.org
Hmm. It looks to me like the conductive medium acts like one big antenna, absorbing the energy of the EM wave as it travels and dissipating it as heat.

sirch said:
After all we use conductors to carry RF.

Conductors are used to carry the signal in the equipment which generate and receive the signal, but these are specialized conductors constructed specifically to carry an RF frequency signal. Regular wires would lose too much of the signal due to several different effects. The higher the frequency, the higher the losses. See page 7 here: http://www.navymars.org/national/training/nmo_courses/NMO1/module10/14182_ch3.pdf
 
Last edited:
Thanks, I think the absorption of energy is what I was missing
 
sirch said:
I'm trying to get my head around radio wave propagation in conductive media such as water, saturated rock, etc. What I know is that propagation is poor but better at lower frequencies and this has something to do with "skin depth". I have read what I can on skin depth but I struggle to relate it to a bulk medium such as a body of water.

Is there a simple explanation of why conductive media are poor transmitters of radio energy? After all we use conductors to carry RF. Is it because a radio essentially detects the signal difference between two points (antenna and ground for example) and in a body of water the signal just bleeds away to ground?

Aamof, the conductor doesn't directly carry much of the energy (ideally , none). The energy that flows along a radio frequency transmission line is in the form of EM waves with the fields around and between the conductors. Current flows on the surfaces (ignoring skin depth) but the voltages on the surface are near zero (v low resistance) which keeps the EM wave traveling and localises it near the line. For example, the fields are in the spaces between the inner conductor and the screen of a co-ax cable or in between or right next to the two conductors in a twisted pair used in Ethernet connections or on the inside surfaces of a waveguide. As you have spotted, any resistance in the conductors constitutes a loss mechanism.
The easiest materials to study are highly conductive metals, where the energy is reflected off the surface or good insulators which will be transparent to EM waves and mostly just affect the speed of the em wave passing through (refractive index and all that - remember?) along with a bit of loss on the way through.

Water and other 'slightly conductive' substances are the worst cases to study because they have a Complex Refractive Index, slowing down waves and absorbing them at the same time. Submarines can communicate from below the surface only by using extremely low frequency signals (tens of Hz, at times), for which the skin depth allow some penetration to depths that are 'safe' for the submarine. To communicate as such low frequencies requires incredibly long wire transmitting and receiving antennas (hundreds of metres in length).
 
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...
After my surgery this year, gas remained in my eye for a while. The light air bubbles appeared to sink to the bottom, and I realized that the brain was processing the information to invert the up/down/left/right image transferred to the retina. I have a question about optics and ophthalmology. Does the inversion of the image transferred to the retina depend on the position of the intraocular focal point of the lens of the eye? For example, in people with farsightedness, the focal point is...
Back
Top