Radioactive samples and differential equations

fogvajarash
Messages
127
Reaction score
0

Homework Statement



A certain nuclear plant produces radioactive waste in the form of strontium-90 at the constant rate of 500kg. The waste decays exponentially with a half-life of 28 years. How much of this radioactive waste from the nuclear plant will be present after the following increments of time? Assume that initially 600kg of strontium-90 is in the nuclear plant.

a. N years
b. 140 years
c. To perpetuity

Homework Equations


-

The Attempt at a Solution



I found that the "rate in" was 500kg/year, and I'm not sure about the "rate out" (rate of depletion of the sample).

We are given that the sample decays exponentially, so we should have that y(t) = yo e-0.02475t. We can assume that yo is just y (the radioactive sample that is decaying). Then, the rate of depletion would be (I doubt that this is true):

y'(t) = -0.2475ye-0.02475t

This is because this is the rate of change of the sample. Then, i set up my differential equation to be the following (k is just the constant k = (ln2)/(half life)):

dm/dt = 500 - kme-kt

I rearranged the terms into the form dm/dt - P(x)y = f(t), i came up that the integrating factor was actually e-e^(-kt)), but this is not true (while differentiating the function I realized that it it was a completely new expression that was different to the one shown).

How can I proceed from this information or have i made a wrong set-up to the exercise?

Thank you.
 
Physics news on Phys.org
The decay rate depends on the current amount in the store.
That is what "exponential decay" means.

If y is the mass of 90Sr then:

$$\frac{dy}{dt} = -\lambda y$$

see:
http://en.wikipedia.org/wiki/Exponential_decay

The constant ##\lambda## is related to the half-life.
 
Last edited:
fogvajarash said:
dm/dt = 500 - kme-kt
The differential equation has to be :

dm/dt=500-km,

as the amount of Sr-90 increase by 500 kg/year, and decreases proportionally with the amount present, that is by km. Solve, and fit the integration constant to the initial condition m(0)=600 kg.

ehild
 
I see. So the only way of doing this exercise is knowing the definition? Or is there a non definition way?

As well, the constant in the linear rate term (rate of decay) is just the k constant found in the exponent right?
 
I see. So the only way of doing this exercise is knowing the definition? Or is there a non definition way?
The only way to do a problem is to understand what the words mean - yeah.

As well, the constant in the linear rate term (rate of decay) is just the k constant found in the exponent right?
If you don't know, you should solve the differential equation to find out what the constant is.

Have you not done a section of coursework that covers radioactive decay?
 
fogvajarash said:

Homework Statement



A certain nuclear plant produces radioactive waste in the form of strontium-90 at the constant rate of 500kg. The waste decays exponentially with a half-life of 28 years. How much of this radioactive waste from the nuclear plant will be present after the following increments of time? Assume that initially 600kg of strontium-90 is in the nuclear plant.

a. N years
b. 140 years
c. To perpetuity

Homework Equations


-

The Attempt at a Solution



I found that the "rate in" was 500kg/year, and I'm not sure about the "rate out" (rate of depletion of the sample).

We are given that the sample decays exponentially, so we should have that y(t) = yo e-0.02475t. We can assume that yo is just y (the radioactive sample that is decaying). Then, the rate of depletion would be (I doubt that this is true):

y'(t) = -0.2475y0e-0.02475t=-0.2475 y

That is true with a sample decaying only - with no input. Now you have input at constant rate. It is true that the rate of decay is proportional to the amount present : -0.2475y, but there is also input 500 kg/year. So the net rate of change of the amount of Sr-90 is dm/dt=500-0.2475m.

ehild
 
Simon Bridge said:
The only way to do a problem is to understand what the words mean - yeah.

If you don't know, you should solve the differential equation to find out what the constant is.

Have you not done a section of coursework that covers radioactive decay?
I have, but i just wanted to make sure if I'm correct or not (I'm sorry! I don't want to commit the same mistakes again).

I was thinking, as the rate of depletion is ry0e-rt, can we just say that it should be ry? (consider that m, the mass of the radioactive sample, is defined as y = y0e-rt).

After having this information it should just be a simple variables separable problem to get to the final answer. Say, if we had that the input wasn't constant (suppose it was 600t), then we would have to deal with a first order linear differential equation?

Thank you for your great patience Simon.
 
fogvajarash said:
I have, but i just wanted to make sure if I'm correct or not (I'm sorry! I don't want to commit the same mistakes again).

I was thinking, as the rate of depletion is ry0e-rt, can we just say that it should be ry? (consider that m, the mass of the radioactive sample, is defined as y = y0e-rt.

The rate of depletion is is ry, but y is not equal y0e-rt.

fogvajarash said:
After having this information it should just be a simple variables separable problem to get to the final answer. Say, if we had that the input wasn't constant (suppose it was 600t), then we would have to deal with a first order linear differential equation?

We deal with a first order linear differential equation anyway.

ehild
 
Back
Top