Radius of effect of atomic interactions

jshrager
Gold Member
Messages
24
Reaction score
1
Suppose that I have an atom in one corner of a room, and I fire a photon toward the opposite corner (and assume that it is absorbed there into the wall). There is essentially zero probability that that photon will interact with the atom (either be captured, or stimulate emission, or whatever). As the angle at which I fire the photon relative to the position of the atom becomes smaller, this probability increases until I'm aiming essentially at the nucleus of the atom, at which (I assume) the interaction probability will be largest. Several questions: 1. Am I framing this correctly? That is, it is a matter of interaction probabilities and the spatial relations determine these. 2. (Here's my real question) How does one frame this mathematically, esp. regarding the excitation state of the atom? 3. Suppose that instead of an atom and a photon I'm shooting another atom at the first one, say, I'm shooting one ground state H at another the same, v. H+ at H+, or an excited H at another? In these cases I'm hoping to find an equation that relates the excitation state of the atoms to the angles of interaction and the interaction probabilities.

Thanks!
 
Physics news on Phys.org
The photon is not a classical point-like particle, but the basic idea is right - the interaction probability depends on the direction of your photon emission, aiming as precise as possible should give the largest interaction probability.
2. (Here's my real question) How does one frame this mathematically, esp. regarding the excitation state of the atom?
Depends on the theory you use to describe the interaction. For single photons, probably quantum electrodynamics, and then it gets complicated (you first need some superposition of planar waves to describe your localized particles, and then scattering amplitudes for all those planar waves, ...
Nonrelativistic quantum mechanics with continuous light is easier.
3. Suppose that instead of an atom and a photon I'm shooting another atom at the first one, say, I'm shooting one ground state H at another the same, v. H+ at H+, or an excited H at another? In these cases I'm hoping to find an equation that relates the excitation state of the atoms to the angles of interaction and the interaction probabilities.
I guess that's possible, but probably complicated. For two charged H+ (=just the nuclei): if the energy is not too high, you get the Coulomb repulsion only, and you can solve the system with classical mechanics.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top