holden
- 30
- 0
Having a lot of trouble with this one. I'm given that the Hamiltonian of a certain particle can be expressed by H = A(a+a) + B(aa+), where A and B are constants and a+ and a are the raising and lowering operators, respectively. I'm supposed to find the energies of the stationary states for the particle.
I'm also given that the operators satisfy the communtation relation [a, a+] = 1. So from this I'm getting aa_+\psi - a_+a\psi = \psi. From the Hamiltonian I have A(a_+a)\psi + B(aa_+)\psi = E\psi. I tried using the first equation to replace one of the terms on the left side in the second, to get A(aa_+\psi - \psi) + B(aa_+\psi) = E\psi... but I don't see how this really helps. I'm stuck on what to do next, so any help would be appreciated :)
I'm also given that the operators satisfy the communtation relation [a, a+] = 1. So from this I'm getting aa_+\psi - a_+a\psi = \psi. From the Hamiltonian I have A(a_+a)\psi + B(aa_+)\psi = E\psi. I tried using the first equation to replace one of the terms on the left side in the second, to get A(aa_+\psi - \psi) + B(aa_+\psi) = E\psi... but I don't see how this really helps. I'm stuck on what to do next, so any help would be appreciated :)
Last edited: