ClaraOxford
- 6
- 0
I've been going back over my general relativity problem sheets and have realized I am not raising and lowering vectors/tensors properly. I've written out my calculations in detail below. I've tried to follow exact logical steps, but I must be misunderstanding, because my answers seem wrong (I often end up with just numbers)..
Imagine we have a tensor Xαβ and a vector Vα with components
Xαβ = \begin{pmatrix} 2 & 0 & 1 & -1 \\-1 & 0 & 3 & 2 \\-1 & 1 & 0 & 0 \\-2 & 1 & 1 & -2 \end{pmatrix}
and Vα = \begin{pmatrix} -1 \\2 \\0 \\-2 \end{pmatrix}
Find Xαβ, Xαβ, X(αβ), X[αβ], Xλλ, VαVα, VαXαβ
I have been trying to use the raising/lowering metric g = \begin{pmatrix} 1 & 0 & 0 & 0 \\0 & -1 & 0 & 0 \\0 & 0 & -1 & 0 \\0 & 0 & 0 & -1 \end{pmatrix}
→ VαVα = -VαXλλ = gλαgλβXαβ
gλβXαβ = gλ0Xα0 + gλ1Xα1 + gλ2Xα2 + gλ3Xα3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\0 \end{pmatrix}*\begin{pmatrix} 2 \\ -1 \\ -1 \\-2 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 0 \\0 \end{pmatrix}*\begin{pmatrix} 0 \\ 0 \\ 1 \\1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -1 \\0 \end{pmatrix}*\begin{pmatrix} 1 \\ 3 \\ 0 \\1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\-1 \end{pmatrix}*\begin{pmatrix} -1 \\ 2 \\ 0 \\-2 \end{pmatrix} = 2 + 0 + 0 + 2 = 4
I haven't written my attempts to every equation, because I'm pretty sure my method is wrong and it's taking forever to write out the matrices!
If anyone can spot where I'm going wrong that would be really helpful. Seeing as this is the most basic part of my general relativity course, if I can't get this bit right I'll be in trouble in the exam in june!
Thank you.
Homework Statement
Imagine we have a tensor Xαβ and a vector Vα with components
Xαβ = \begin{pmatrix} 2 & 0 & 1 & -1 \\-1 & 0 & 3 & 2 \\-1 & 1 & 0 & 0 \\-2 & 1 & 1 & -2 \end{pmatrix}
and Vα = \begin{pmatrix} -1 \\2 \\0 \\-2 \end{pmatrix}
Find Xαβ, Xαβ, X(αβ), X[αβ], Xλλ, VαVα, VαXαβ
Homework Equations
I have been trying to use the raising/lowering metric g = \begin{pmatrix} 1 & 0 & 0 & 0 \\0 & -1 & 0 & 0 \\0 & 0 & -1 & 0 \\0 & 0 & 0 & -1 \end{pmatrix}
The Attempt at a Solution
Xαβ = gααXαβ = \sum<sub>α</sub>g<sub>αα</sub>Xαβ = g00X0β + g11X1β + g22X2β + g33X3β = X0β - X1β - X2β - X3β = \begin{pmatrix} 2 & 0 & 1 & -1 \end{pmatrix} - \begin{pmatrix} -1 & 0 & 3 & 2 \end{pmatrix} - \begin{pmatrix} -1 & 1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} -2 & 1 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 6 & -2 & -4 & -1 \end{pmatrix}Vα = gααVα = g00V0 + g11V1 + g22V2 + g33V3 = V0 - V1 - V2 - V3 = -1 -2 -0 -(-2) = -1→ VαVα = -VαXλλ = gλαgλβXαβ
gλβXαβ = gλ0Xα0 + gλ1Xα1 + gλ2Xα2 + gλ3Xα3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\0 \end{pmatrix}*\begin{pmatrix} 2 \\ -1 \\ -1 \\-2 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 0 \\0 \end{pmatrix}*\begin{pmatrix} 0 \\ 0 \\ 1 \\1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -1 \\0 \end{pmatrix}*\begin{pmatrix} 1 \\ 3 \\ 0 \\1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\-1 \end{pmatrix}*\begin{pmatrix} -1 \\ 2 \\ 0 \\-2 \end{pmatrix} = 2 + 0 + 0 + 2 = 4
I haven't written my attempts to every equation, because I'm pretty sure my method is wrong and it's taking forever to write out the matrices!
If anyone can spot where I'm going wrong that would be really helpful. Seeing as this is the most basic part of my general relativity course, if I can't get this bit right I'll be in trouble in the exam in june!
Thank you.