Rank of a Matrix: Can We Eliminate Lines to Get Non-Vanishing Determinant?

  • Thread starter Thread starter quasar987
  • Start date Start date
  • Tags Tags
    Matrix rank
quasar987
Science Advisor
Homework Helper
Gold Member
Messages
4,796
Reaction score
32
If A is an nxk matrix of real numbers (n>=k) of rank k, is it true that we can eliminate n-k lines of A to obtain a matrix A' of nonvanishing determinant?

I convinced myself of that one time while in the bus and now I can't find the proof.
 
Physics news on Phys.org
Hmm, if A is of rank k, then that means that the row space of A is spanned by k vectors , and this means that we can eliminate (n-k) rows of A which are effectively linear combinations of the others. So when we do that we have A', which is a kxk matrix and of rank k, which implies that it is invertible which in turn implies its det is non-zero.
 
Ohhh.. yeah!

Thanks!
 
Welcome. I'm trying to jog my linear algebra memory for a intermediate linear algebra class this semester.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top