Rational Polynomials over a Field

PingPong
Messages
61
Reaction score
0

Homework Statement


Suppose there are two polynomials over a field, f and g, and that gcd(f,g)=1. Consider the rational functions a(x)/f(x) and b(x)/g(x), where deg(a)<deg(f) and deg(b)<deg(g). Show that if a(x)/f(x)=b(x)/g(x) is only true if a(x)=b(x)=0.

Homework Equations


None

The Attempt at a Solution


I've not really gotten any solid ideas here, but these are the few things that have gone through my mind.

If they are equal then ag=bf, so deg(a)+deg(g)=deg(b)+deg(f). We also have deg(ag)=deg(a)+deg(g)<deg(f)+deg(g) and also deg(bf)=deg(b)+deg(f)<deg(g)+deg(f), so there are no problems there.

Since f and g are relatively prime, I can write 1=fu+gw for some polynomials u and w. Thus f=(1-gw)/u, and the equality becomes agu=b(1-gw)=b-bgw.

Am I on the right track? Any hints? Thanks in advance!

EDIT: Okay, here's something else I've come up with in the past few minutes. Since ag=bf, we have a=bf/g. Thus g divides bf and since, gcd(f,g)=1 so g divides b. But the degree of g is greater than that of b, so b is necessarily the zero polynomial, and a follows similarly.

Is this okay?
 
Last edited:
Physics news on Phys.org
Your last few minutes have been very productive. You convinced me.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top