Rearrange Equation: Steps to Go from 1 to 2

  • Thread starter Thread starter MMCS
  • Start date Start date
MMCS
Messages
151
Reaction score
0
Hi,

Could someone show me the steps used to get from equation 1 to equation 2

Thanks

1.) MwCw(Tc2-Tw1)=-MbCb(Tc2-Tb1)

2.) MwCwTc2+MbCbTc2 = MwCwTw1+MbCbTb1
 
Physics news on Phys.org
Try exanding the first equation out and seeing what you think should happen from there, it is quite a trivial step between. (Why is this in Calculus and Beyond?)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top