Serj said:
I've got a problem I don't know how to rearrange. d=Vt+1/2 at^2 ,i'm supposed to find out what t equals.
d/V=Vt/V+1/2 at^2
d/V=t +1/2 at^2
2d/V=t +2*1/2 at^2
2 d/V=t + at^2
(2 d/V)/a=t + at^2/a
(suare root of)(2 d/V)/a=t + (square root of)t^2
(suare root of)(2 d/V)/a=t +t
((suare root of)(2 d/V)/a)/2=2t/2
((suare root of)(2 d/V)/a)/2=t
What did I do wrong? how do I fix it so I am not dividing fractions
First, you made an error in your first step. If you divide by V, you have to divide EVERYTHING by V, so your second equation would be:
d/V=Vt/V + 1/2(at^2)/V
However, to solve for t in this case, you can't just rearrange the equation. Now you need to go back through some of the other kinematic equations you have learned so far and use those to substitute equivalent terms in this equation so you end up isolating t.
At this point, you need to pay very careful attention that V in this equation is actually Vo, or the initial velocity in case your book uses a different way to symbolize that.
Since this is pretty complicated, I'll get you started, but then you're going to have to look through your notes and see if you can find another equation that helps substitute terms where I leave off. Something else I want to point out from reading what's been done in this thread previously is to remember to pay attention to the order of operations and watch what terms are enclosed in parentheses. In case you've forgotten the order of operations, remember the acronym PEMDAS for Parentheses, Exponents, Multiply, Divide, Add, Subtract. If you aren't careful of doing everything in this order, you'll introduce errors.
1) d=Vot+1/2at^2 (your starting equation)
2) d=(Vo + 1/2at)t (factored out t)
3) d=2/2(Vo + 1/2at)t (multiplied the right side of the equation by 2/2; this is not an intuitive step, which is why I wanted to walk you through to this point. You can always multiply by 1 on one side of an equation without changing it's value, and sometimes that means using a fraction like 2/2...back when I was learning this stuff, figuring out when to use that particular trick was really difficult and sometimes it's a matter of staring at the other equations you have to use long enough until one of them jumps out as being a likely candidate if only you had a different denominator somewhere)
4) d=((2Vo + at)/2)t (factored out the 2/2)
5) d= ((Vo + Vo + at)/2)t (substituted Vo + Vo for 2Vo; basic arithmetic)
Okay, now I think this should have gotten you started well on your way. Look through your other equations and see if there's something that allows you to eliminate a term that includes t so you can then rearrange the equation to finish solving for the other t.