Rearranging the equation for the cutoff condition in optical fibers

Click For Summary
SUMMARY

The discussion focuses on the derivation of the cutoff condition for modes in optical fibers, specifically analyzing the characteristic equation involving propagation constants ##k_1## and ##k_2##, and the normalized quantities ##u## and ##w##. The user, EmilyP, identifies discrepancies between their derived expression and the one presented in a referenced document, particularly regarding the signs of terms involving ##\frac{k_1^2 + k_2^2}{k_1^2}##. After thorough examination, EmilyP concludes that the document's expression is indeed correct, and provides a corrected derivation that aligns with the expected results.

PREREQUISITES
  • Understanding of optical fiber theory and propagation constants
  • Familiarity with Bessel functions and their properties
  • Knowledge of normalized quantities in waveguide analysis
  • Ability to manipulate and rearrange mathematical expressions in physics
NEXT STEPS
  • Study the derivation of cutoff conditions in optical fibers using "Optical Fiber Communications" by Gerd Keiser
  • Explore the properties of Bessel functions in "Mathematical Methods for Physicists" by Arfken and Weber
  • Learn about the application of normalized quantities in waveguide theory
  • Review advanced topics in optical waveguides and modes in "Fiber Optic Communication Systems" by John G. Proakis
USEFUL FOR

Researchers, physicists, and engineers working in optical fiber technology, particularly those involved in the design and analysis of fiber optic systems and waveguide modes.

EmilyRuck
Messages
134
Reaction score
6
Hello!

In Optical fibers, let ##k_1## and ##k_2## be respectively the propagation constants in core and cladding, ##\beta## the propagation costant of a mode along the direction ##z##, ##a## the radius of the fiber. Using the normalized quantities ##u=a \sqrt{k_1^2 − \beta^2}## and ##w=a \sqrt{\beta^2 − k_2^2}##, the characteristic equation for modes is:

$$\left[ \displaystyle \frac{J'_{\nu} (u)}{u J_{\nu}(u)} + \frac{K'_{\nu} (w)}{w K_{\nu}(w)} \right] \left[ \displaystyle \frac{k_1^2 J'_{\nu} (u)}{u J_{\nu}(u)} + \frac{k_2^2 K'_{\nu} (w)}{w K_{\nu}(w)} \right] = \nu^2 \beta^2 \left( \displaystyle \frac{1}{u^2} + \frac{1}{w^2} \right)^2$$

where ##n_1## and ##n_2## are the refractive indices of core and cladding, ##\nu## is the order of Bessel functions.

As specified in this document, page 15, the cutoff condition for modes is obtained taking the limit of the above expression for ##w \to 0##. But, before this, I can't obtain the same expression as in the document. Consider:

$$\frac{J'_{\nu} (u)}{u J_{\nu}(u)} = \frac{J_{\nu - 1} (u)}{u J_{\nu}(u)} - \frac{\nu}{u^2} = \xi_1(u) - \frac{\nu}{u^2}\\
\frac{K'_{\nu} (w)}{w K_{\nu}(u)} = \frac{K_{\nu - 1} (w)}{w K_{\nu}(w)} + \frac{\nu}{w^2} = \xi_2(w) + \frac{\nu}{w^2}$$

Substituting in the characteristic equation, dividing both sides by ##k_1^2## and rearranging the terms, I obtain:

$$\xi_1^2(u) + \xi_1(u) \left[ \frac{k_1^2 + k_2^2}{k_1^2} \cdot \xi_2(w) - \nu \left( \frac{2}{u^2} - \frac{k_1^2 + k_2^2}{k_1^2} \cdot \frac{1}{w^2} \right) \right] + \left[ \frac{k_2^2}{k_1^2} \cdot \xi_2^2(w) - \xi_2(w) \nu \left( \frac{k_1^2 + k_2^2}{k_1^2} \cdot \frac{1}{u^2} - 2 \frac{k_2^2}{k_1^2} \cdot \frac{1}{w^2} \right) \right] + \left( \frac{\nu}{u^2} \right)^2 - \frac{\nu^2}{u^2 w^2} - \frac{k_2^2}{k_1^2} \cdot \frac{\nu^2}{u^2 w^2} + \frac{k_2^2}{k_1^2} \left( \frac{\nu}{w^2} \right)^2 - \frac{1}{k_1^2} \left( \frac{\nu^2 \beta^2}{u^4} + 2 \frac{\nu^2 \beta^2}{u^2 w^2} + \frac{\nu^2 \beta^2}{w^4} \right) = 0$$

I double checked this result, but the document shows instead:

$$\xi_1^2(u) - \xi_1(u) \left[ \frac{k_1^2 + k_2^2}{k_1^2} \cdot \xi_2(w) + \nu \left( \frac{2}{u^2} + \frac{k_1^2 + k_2^2}{k_1^2} \cdot \frac{1}{w^2} \right) \right] + \left[ \frac{k_2^2}{k_1^2} \cdot \xi_2^2(w) + \xi_2(w) \nu \left( \frac{k_1^2 + k_2^2}{k_1^2} \cdot \frac{1}{u^2} + 2 \frac{k_2^2}{k_1^2} \cdot \frac{1}{w^2} \right) \right] = 0$$

First, terms with ##\frac{k_1^2 + k_2^2}{k_1^2}## have swapped signs; moreover, I can't figure out how it could be

$$\left( \frac{\nu}{u^2} \right)^2 - \frac{\nu^2}{u^2 w^2} - \frac{k_2^2}{k_1^2} \cdot \frac{\nu^2}{u^2 w^2} + \frac{k_2^2}{k_1^2} \left( \frac{\nu}{w^2} \right)^2 - \frac{1}{k_1^2} \left( \frac{\nu^2 \beta^2}{u^4} + 2 \frac{\nu^2 \beta^2}{u^2 w^2} + \frac{\nu^2 \beta^2}{w^4} \right) = 0$$

Is the result in the document correct? Or am I doing something wrong? As an alternative, I'm also looking for a textbook which deals with the procedure to obtain the cutoff condition.EmilyP. S.
The linked document should be similar, or equal, to this article:

Cylindrical Dielectric Waveguide Modes, E. Snitzer, Journal of the Optical Society of America Vol. 51, Issue 5, pp. 491-498 (1961)

which I can't find for free.
 
Science news on Phys.org
Temporarily putting aside the ##\frac{k_1^2 + k_2^2}{k_1^2}## terms signs, consider the part which should be ##0##. The first 4 terms come from the espansion of the LHS (which involves ##\xi_1##, ##\xi_2##) of the original characteristic equation. The last 3 terms directly come from the RHS of the characteristic equation, divided by ##k_1^2##. Considering the homologous terms:

$$\frac{\nu^2}{u^4} \left( 1 - \frac{\beta^2}{k_1^2} \right) - \frac{\nu^2}{u^2 w^2} \left( \frac{k_1^2 + k_2^2}{k_1^2} + 2 \frac{\beta^2}{k_1^2} \right) + \frac{\nu^2}{w^4} \left( \frac{k_2^2}{k_1^2} - \frac{\beta^2}{k_1^2} \right) = \\
= \frac{\nu^2}{u^4} \left( \frac{k_1^2 - \beta^2}{k_1^2} \right) - \frac{\nu^2}{u^2 w^2} \left( \frac{k_1^2 + k_2^2 + 2\beta^2}{k_1^2} \right) + \frac{\nu^2}{w^4} \left( \frac{k_2^2 - \beta^2}{k_1^2} \right)$$

Now, ##u = a k_{t_1}## and ##w = a |k_{t_2}|##. ##k_{t_1}## is, in the core, the wavevector component orthogonal to the direction of propagation: the transverse wavevector; ##k_{t_2}## is its homologous in the cladding, but for a confined mode it is pure imaginary, therefore ##k_{t_2}^2 = - |k_{t_2}|^2##. Then,

$$k_1^2 - \beta^2 = k_{t_1}^2 = \frac{u^2}{a^2}\\
k_2^2 - \beta^2 = - |k_{t_2}|^2 = - \frac{w^2}{a^2}\\
k_{t_1}^2 - |k_{t_2}|^2 = k_1^2 + k_2^2 - 2 \beta^2 \Rightarrow k_1^2 + k_2^2 - 2 \beta^2 = \frac{u^2 - w^2}{a^2}$$

Substituting in the above equation:

$$\frac{\nu^2}{a^2 u^2} - \frac{\nu^2}{a^2 w^2} + \frac{\nu^2}{a^2 u^2} - \frac{\nu^2}{u^2 w^2} 4 \beta^2 - \frac{\nu^2}{a^2 w^2} = \\
= 2 \frac{\nu^2}{a^2 u^2} - 2\frac{\nu^2}{a^2 w^2} - 4 \frac{\nu^2}{u^2 w^2} \beta^2 = 2 \frac{\nu^2}{a^2} \cdot \frac{w^2 - u^2}{u^2 w^2} - 4 \frac{\nu^2}{u^2 w^2} \beta^2 = \\
= - 2 \nu^2 \cdot \frac{k_1^2 + k_2^2 - 2 \beta^2}{u^2 w^2} - 4 \frac{\nu^2}{u^2 w^2} \beta^2 = - 2 \nu^2 \cdot \frac{k_1^2 + k_2^2}{u^2 w^2}$$

I hope I did not make errors. But, still, it doesn't seem that this expression can be ##0##.
 
The first expression, which is correct, is written using formula (A4) of the linked document:

$$\frac{J'_{\nu} (u)}{u J_{\nu}(u)} = \frac{J_{\nu - 1} (u)}{u J_{\nu}(u)} - \frac{\nu}{u^2} = \xi_1(u) - \frac{\nu}{u^2}$$

Formula (A6), used for the second expression, is wrong. It should be:

$$\frac{K'_{\nu} (w)}{w K_{\nu}(u)} = - \frac{K_{\nu - 1} (w)}{w K_{\nu}(w)} - \frac{\nu}{w^2}$$

And therefore the second expression should be:

$$\frac{K'_{\nu} (w)}{w K_{\nu}(u)} = - \frac{K_{\nu - 1} (w)}{w K_{\nu}(w)} - \frac{\nu}{w^2} = - \xi_2(w) - \frac{\nu}{w^2}$$

Substituting in the characteristic equation, the mentioned issues are no more present. In fact, signs are correct and the extra-term becomes:

$$\left( \frac{\nu}{u^2} \right)^2 + \frac{\nu^2}{u^2 w^2} + \frac{k_2^2}{k_1^2} \cdot \frac{\nu^2}{u^2 w^2} + \frac{k_2^2}{k_1^2} \left( \frac{\nu}{w^2} \right)^2 - \frac{1}{k_1^2} \left( \frac{\nu^2 \beta^2}{u^4} + 2 \frac{\nu^2 \beta^2}{u^2 w^2} + \frac{\nu^2 \beta^2}{w^4} \right)$$

Consider the homologous terms, it becomes:

$$\frac{\nu^2}{u^4} \left( 1 - \frac{\beta^2}{k_1^2} \right) - \frac{\nu^2}{u^2 w^2} \left( - \frac{\left( k_1^2 + k_2^2 \right)}{k_1^2} + 2 \frac{\beta^2}{k_1^2} \right) + \frac{\nu^2}{w^4} \left( \frac{k_2^2}{k_1^2} - \frac{\beta^2}{k_1^2} \right)$$

Substituting

$$ - \left( k_1^2 + k_2^2 \right) + 2 \beta^2 = \frac{w^2 - u^2}{a^2}\\
k_1^2 - \beta^2 = \frac{u^2}{a^2}\\
k_2^2 - \beta^2 = - \frac{w^2}{a^2}$$

The whole term vanishes.

The final result is, as expected,

$$\xi_1^2(u) - \xi_1(u) \left[ \frac{k_1^2 + k_2^2}{k_1^2} \cdot \xi_2(w) + \nu \left( \frac{2}{u^2} + \frac{k_1^2 + k_2^2}{k_1^2} \cdot \frac{1}{w^2} \right) \right] + \left[ \frac{k_2^2}{k_1^2} \cdot \xi_2^2(w) + \xi_2(w) \nu \left( \frac{k_1^2 + k_2^2}{k_1^2} \cdot \frac{1}{u^2} + 2 \frac{k_2^2}{k_1^2} \cdot \frac{1}{w^2} \right) \right] = 0$$
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
558
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K