Reconstructing operator matrix from subspace samples

uekstrom
Messages
7
Reaction score
0
Hi,
I wonder if there is some agreed-upon best way to reconstruct the matrix of a positive definite operator A using "sampling" (like in tomography). More in detail I want to do this:

I have many small sets of basis functions. The sets are in general not orthogonal. I compute matrix elements <i|A|j>, where |i> and |j> belong to the same "set". In other words, in the non-orthogonal basis I know certain diagonal blocks of A, while the other elements are unknown. I want to determine an estimate of the off diagonal elements.

One way of reconstructing A is to simply take any orthogonal basis for the union of all basis functions, and then work with that. However, the orthogonal basis is not unique. My question is if there is a best way of doing this?
 
Physics news on Phys.org
You don't need orthogonality, linear independence is sufficient. And it gives you an entire linear equation system for the unknown ##A_{ij}## not only the diagonal. The question is alone which part of the domain you can cover by your small sets.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top