radiator
- 23
- 0
Note: I think I solved this while writing this topic, did not want to scrap it! if you think its wrong let me know!
I am trying to manipulate the rectangular function with different arguments and came across a confusing one
Trying to show: \prod (x^2) = \prod (\frac{x}{\sqrt{2}})
Recall that the rectangular function is given by:
\prod (x) = \begin{cases} 1 & if |x| < 1/2 \\ 0 & if |x| >1/2 \end{cases}
if x -> x/T then
as a general case:
\prod (\frac{x}{T}) = \begin{cases} 1 & if |x| < T/2 \\ 0 & if |x| >T/2 \end{cases}
this still gives the the rect function a width of T by solving
-T/2 < x < T/2
How about an argument such as
x \rightarrow x^2
trying to solve this ineqality
\begin{eqnarray} |x^2| & < & 1/2 \ if x \in R \\ x^2-1/2 & < & 0 \\ -\frac{1}{\sqrt{2}} < x & < & \frac{1}{\sqrt{2}} \\ -\frac{\sqrt{2}}{2} < x & < & \frac{\sqrt{2}}{2} \\ -\frac{1}{2} < \frac{x}{\sqrt{2}} & < & \frac{1}{2} \\ | \frac{x}{\sqrt{2}} |< | \frac{1}{2} | \end{eqnarray}
Therefore:
\prod (x^2) = \prod (\frac{x}{\sqrt{2}})
I am trying to manipulate the rectangular function with different arguments and came across a confusing one
Trying to show: \prod (x^2) = \prod (\frac{x}{\sqrt{2}})
Recall that the rectangular function is given by:
\prod (x) = \begin{cases} 1 & if |x| < 1/2 \\ 0 & if |x| >1/2 \end{cases}
if x -> x/T then
as a general case:
\prod (\frac{x}{T}) = \begin{cases} 1 & if |x| < T/2 \\ 0 & if |x| >T/2 \end{cases}
this still gives the the rect function a width of T by solving
-T/2 < x < T/2
How about an argument such as
x \rightarrow x^2
trying to solve this ineqality
\begin{eqnarray} |x^2| & < & 1/2 \ if x \in R \\ x^2-1/2 & < & 0 \\ -\frac{1}{\sqrt{2}} < x & < & \frac{1}{\sqrt{2}} \\ -\frac{\sqrt{2}}{2} < x & < & \frac{\sqrt{2}}{2} \\ -\frac{1}{2} < \frac{x}{\sqrt{2}} & < & \frac{1}{2} \\ | \frac{x}{\sqrt{2}} |< | \frac{1}{2} | \end{eqnarray}
Therefore:
\prod (x^2) = \prod (\frac{x}{\sqrt{2}})