Tiling a 2x7 Grid with 1x1 and 1x2 Tiles: Finding the Number of Tilings

BrownianMan
Messages
133
Reaction score
0
\textup{A 2 x 7 rectangle has tiling with 1 x 1 and 1 x 2 tiles (singletons and doubletons).}
\textup{How many such tilings of a 2 x 7 grid are there?}

\textup{Let }a_{n}\textup{ be the number of tilings of a 2 x n grid using 1 x 1 and 1 x 2 tiles so that the}
\textup{two rightmost squares are occupied by singletons, let }b_{n}\textup{ be the number of tilings}
\textup{ with one singleton and one doubleton in the rightmost squares, and let }c_{n}\textup{ be the}
\textup{ number of other tilings (two horizontal doubletons or one vertical doubleton). The}
\textup{problem asks for }a_{7}+b_{7}+c_{7}. \textup{ When one appends another column to the right side,}
\textup{forming a 2 x (n + 1) grid, either one can add 2 singletons or a vertical doubleton, or}
\textup{one can change any singletons in the nth column to doubletons. This yields:}

a_{n+1}=a_{n}+b_{n}+c_{n}
b_{n+1}=2a_{n}+b_{n}
c_{n+1}=2a_{n}+b_{n}+c_{n}

***doubletons may be placed vertically or horizontally.

Use the recurrence relations to obtain a numerical answer to the problem.

Not sure how do start this. Any help?
 
Physics news on Phys.org
Consider the case where n=1. Just count the different ways you can tile the grid to figure out a1, b1, and c1.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top