Reducing the Order of a Cauchy-Euler Equation

  • Thread starter Thread starter Juanriq
  • Start date Start date
  • Tags Tags
    Chain Chain rule
Juanriq
Messages
39
Reaction score
0

Homework Statement

Reduce the order of a Cauchy-Euler Equation



Homework Equations

x = e^t \mbox{ and } \ln x = t



The Attempt at a Solution


\displaystyle \frac{d y}{d x} = \displaystyle \frac{d y}{d t} \displaystyle \frac{d t}{d x} = \displaystyle \frac{d y}{d t} \cdot \displaystyle \frac{1}{x}<br />
and thus
<br /> \displaystyle \frac{d^2 y}{d x^2} = \displaystyle \frac{d y}{d t} \cdot \displaystyle \frac{-1}{x^2} + \displaystyle \frac{1}{x} \displaystyle \frac{d}{d x} \Bigl ( \displaystyle \frac{d y}{d t} \Bigl )<br />


Here is where I am getting stuck, specifically on \displaystyle \frac{d}{d x} \Bigl ( \displaystyle \frac{d y}{d t} \Bigl )<br /> this step. I know what I should get...
<br /> \displaystyle \frac{1}{x} \Bigl ( \displaystyle \frac{d^2 y}{d t^2} \cdot \displaystyle \frac{1}{x} \Bigl )<br />
But uhhh not getting it. Thanks in advance!
 
Physics news on Phys.org
You apply the chain rule again, except instead of applying it to y, you're applying it to dy/dt. It's a bit clearer if you look at it in terms of operators:

\frac{d}{dx} f = \frac{dt}{dx}\frac{d}{dt} f = \frac{1}{x}\frac{d}{dt} f

so

\frac{d}{dx} = \frac{1}{x} \frac{d}{dt}
 
Ahhh...very nice! Thanks a bunch!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top